Unity 环境区域网格化,A星算法实例,飞行游戏简单设计

区域网格化

在使用A星算法和物体布局的过程中,常常会使用的网格的概念,即建立在网格的基础上,会使得游戏的相关编程变得简单的多。

格子的代码:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[System.Serializable]
public class Node
{
    public Vector3 _worldPos;//格子中心点的位置
    public int _gridX, _gridY;//在网格列表的下标

    public Node(Vector3 Position, int x, int y)
    {
        _worldPos = Position;
        _gridX = x;
        _gridY = y;
    }
}

网格代码:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

//网格,网格的起点是在左下角,终点是右上角
public class Grid : MonoBehaviour
{
    public static Grid instance;

    private Node[,] grid;//网格
    public Vector2 gridSize;//网格横纵大小
    public float nodeRadius;//格子的半径
    private float nodeDiameter;//格子的直径
    public int gridCntX, gridCntY;//两个方向上的网格数量

    //Test
    public Transform tarTrans;//目标
    public Node tar;
    public float dir;//射程
    //目标区域
    public Node zoneLeftDown;//网格的左下角
    public Node zoneRightUp;//网格的右上角

    Vector3 pos = new Vector3();
    // Start is called before the first frame update
    void Awake()
    {
        instance = this;

        nodeDiameter = nodeRadius * 2;
        gridCntX = Mathf.RoundToInt(gridSize.x / nodeDiameter);
        gridCntY = Mathf.RoundToInt(gridSize.y / nodeDiameter);
        grid = new Node[gridCntX, gridCntY];
        CreateGrid();
    }//创建网格,起始点在左下角
    private void CreateGrid()
    {
        //获得网格的左下角的坐标
        Vector3 startPoint = transform.position - gridSize.x / 2 * Vector3.right - gridSize.y / 2* Vector3.up;
        for (int i = 0; i < gridCntX; i++)
        {
            for (int j = 0; j < gridCntY; j++)
            {
                Vector3 worldPoint = startPoint + Vector3.right * (i * nodeDiameter + nodeRadius) + Vector3.up * (j * nodeDiameter + nodeRadius);
                grid[i, j] = new Node(worldPoint, i, j);
            }
        }
    }

    //获取某个坐标处的格子
    public Node GetFromPosition(Vector3 position)
    {
        //首先获得该坐标相对于网格的宽高的百分比
        float percentX = (position.x + gridSize.x / 2) / gridSize.x;
        float percentY = (position.y + gridSize.y / 2) / gridSize.y;

        //保证百分比值在0到1之间
        percentX = Mathf.Clamp01(percentX);
        percentY = Mathf.Clamp01(percentY);

        int x = Mathf.RoundToInt((gridCntX - 1) * percentX);
        int y = Mathf.RoundToInt((gridCntY - 1) * percentY);

        return grid[x, y];
    }

    //获取一个正方形区域中随机点,length为区域的边长
    public Vector3 GetZoneRandomPos(Vector3 center,float length)
    {
        //射程一定要大于等于0
        //float len = Mathf.Abs(length) / 2;
        //获取射程网格区域
        zoneLeftDown = GetFromPosition(center - new Vector3(length, length));
        zoneRightUp = GetFromPosition(center + new Vector3(length, length));
        //获取并返回射程网格区域中的一个随机点
        int i = Random.Range(zoneLeftDown._gridX, zoneRightUp._gridX);
        int j = Random.Range(zoneLeftDown._gridY, zoneRightUp._gridY);

        return grid[i, j]._worldPos;
    }

    //获取整个区域中的一个随机点
    public Vector3 GetZoneRandomPos()
    {
        int i = Random.Range(0, gridCntX);
        int j = Random.Range(0, gridCntY);
        return grid[i, j]._worldPos;
    }

    private void OnDrawGizmos()
    {
        
        //绘制网格边界线
        Gizmos.DrawWireCube(transform.position, new Vector3(gridSize.x, gridSize.y, 1));
        if (grid == null) return;

        Gizmos.color = new Color(1, 1, 1, 0.2f);
        //绘制网格
        foreach (var node in grid)
        {
            Gizmos.DrawCube(node._worldPos+Vector3.forward, Vector3.one * (nodeDiameter - .1f*nodeDiameter));
        }
    }
}

运行结果:

 一般A星算法实例一,具体算法原理略

这里修改原来的网格代码,从而符合A星算法的需求

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

[System.Serializable]
public class Node
{
    public bool _walkable;//是否可走
    public Vector3 _worldPos;//格子中心点的位置
    public int _gridX, _gridY;//在网格列表的下标

    public int gCost;//到起始点的曼哈顿距离
    public int hCost;//到目标点的曼哈顿距离

    public Node parent;//父亲网格点

    public int fCost {//曼哈顿距离综合
        get { return gCost +hCost; }
    }

    public Node(bool walkable,Vector3 Position, int x, int y)
    {
        _walkable = walkable;
        _worldPos = Position;
        _gridX = x;
        _gridY = y;
    }
}

public class Grid : MonoBehaviour
{
    public static Grid instance;

    private Node[,] grid;//网格
    public Vector2 gridSize;//网格横纵大小
    public float nodeRadius;//格子的半径
    private float nodeDiameter;//格子的直径
    public int gridCntX, gridCntY;//两个方向上的网格数量
    public Vector3 startPoint;//网格的最右下角的坐标
    public LayerMask layer;

    //Test
    public Transform tarTrans;//目标
    public Node tar;
    public float dir;//射程

    public List<Node> path = new List<Node>();

    //目标区域
    public Node zoneLeftDown;//网格的左下角
    public Node zoneRightUp;//网格的右上角

    Vector3 pos = new Vector3();
    // Start is called before the first frame update
    void Awake()
    {
        instance = this;

        nodeDiameter = nodeRadius * 2;
        gridCntX = Mathf.RoundToInt(gridSize.x / nodeDiameter);
        gridCntY = Mathf.RoundToInt(gridSize.y / nodeDiameter);
        grid = new Node[gridCntX, gridCntY];
        CreateGrid();
    }

    //创建网格,起始点在左下角
    private void CreateGrid()
    {
        //获得网格的左下角的坐标
        startPoint = transform.position - gridSize.x / 2 * Vector3.right - gridSize.y / 2 * Vector3.up;
        for (int i = 0; i < gridCntX; i++)
        {
            for (int j = 0; j < gridCntY; j++)
            {
                Vector3 worldPoint = startPoint + Vector3.right * (i * nodeDiameter + nodeRadius) + Vector3.up * (j * nodeDiameter + nodeRadius);
                bool walkable = !Physics2D.OverlapCircle(worldPoint, nodeRadius, layer);
                grid[i, j] = new Node(walkable,worldPoint, i, j);
            }
        }
    }

    //获取某个坐标处的格子,利用百分比,那么在网格区域外的一个点的网格点就是离它最近的那个网格点
    public Node GetFromPosition(Vector3 position)
    {
        //首先获得该坐标相对于网格的宽高的百分比
        float percentX = (position.x + gridSize.x / 2) / gridSize.x;
        float percentY = (position.y + gridSize.y / 2) / gridSize.y;

        //保证百分比值在0到1之间
        percentX = Mathf.Clamp01(percentX);
        percentY = Mathf.Clamp01(percentY);

        int x = Mathf.RoundToInt((gridCntX - 1) * percentX);
        int y = Mathf.RoundToInt((gridCntY - 1) * percentY);

        return grid[x, y];
    }

    //获取网格范围内一个正方形区域中随机点,length为区域的边长
    public Vector3 GetZoneRandomPos(Vector3 center, float length)
    {
        //射程一定要大于等于0
        //float len = Mathf.Abs(length) / 2;
        //获取射程网格区域
        zoneLeftDown = GetFromPosition(center - new Vector3(length, length));
        zoneRightUp = GetFromPosition(center + new Vector3(length, length));
        //获取并返回射程网格区域中的一个随机点
        int i = Random.Range(zoneLeftDown._gridX, zoneRightUp._gridX);
        int j = Random.Range(zoneLeftDown._gridY, zoneRightUp._gridY);

        return grid[i, j]._worldPos;
    }

    //获取整个区域中的一个随机点
    public Vector3 GetZoneRandomPos()
    {
        int i = Random.Range(0, gridCntX);
        int j = Random.Range(0, gridCntY);
        return grid[i, j]._worldPos;
    }

    //获取某格子周围除了自身外的另外所有可走格子
    public List<Node> GetNeibourhood(Node node)
    {
        List<Node> neibourhood = new List<Node>();
        for(int i = -1; i <= 1; i++)
        {
            for(int j = -1; j<= 1; j++)
            {
                if (i == 0 && j == 0) continue;

                int tempX = node._gridX + i;
                int tempY = node._gridY + j;
                if (tempX > 0 && tempX < gridCntX && tempY > 0 && tempY < gridCntY)
                {
                    neibourhood.Add(grid[tempX,tempY]);
                }
            }
        }
        return neibourhood;
    }

    private void OnDrawGizmos()
    {

        //绘制网格边界线
        Gizmos.DrawWireCube(transform.position, new Vector3(gridSize.x, gridSize.y, 1));
        if (grid == null) return;
        //Gizmos.color = new Color(1, 1, 1, 0.2f);
        //绘制网格
        foreach (var node in grid)
        {
            Gizmos.color = node._walkable ? Color.white : Color.red;
            Gizmos.DrawCube(node._worldPos + Vector3.forward, Vector3.one * (nodeDiameter - .1f * nodeDiameter));
        }

        if (path != null)
        {
            foreach(var node in path)
            {
                Gizmos.color = Color.black;
                Gizmos.DrawCube(node._worldPos + Vector3.forward, Vector3.one * (nodeDiameter - .1f * nodeDiameter));
            }
        }

        Node tarNode = GetFromPosition(tarTrans.position);
        if (tarNode != null && tarNode._walkable)
        {
            Gizmos.color = Color.cyan;
            Gizmos.DrawCube(tarNode._worldPos, Vector3.one * (nodeDiameter - .1f * nodeDiameter));
        }
    }
}

下面是A星寻路算法,这里使用了两种不能的路径处理结果

using System.Collections;
using System.Collections.Generic;
using UnityEngine;


//FindingPath为经典的A星寻路算法,获得网格路径。
//FindingPathForFlay是在寻路结束之后,将网格路径中不需要的网格删除调,从而使得运动方向更加平滑,剪除的过程在GeneratePathForFly中进行,
//后期优化可以放在寻路过程中进行
public class FindPath : MonoBehaviour
{
    public Transform hunter, tar;
    Grid _grid;

    // Start is called before the first frame update
    void Start()
    {
        _grid = GetComponent<Grid>();
    }

    // Update is called once per frame
    void Update()
    {
        //FindingPath(hunter.position, tar.position);
        FindingPathForFly(hunter.position, tar.position);
    }

    //经典A*算法到目标点的精确路径查找
    void FindingPath(Vector3 startPos,Vector3 endPos)
    {
        Node startNode = _grid.GetFromPosition(startPos);
        Node endNode = _grid.GetFromPosition(endPos);

        List<Node> openSet = new List<Node>();
        HashSet<Node> closeSet = new HashSet<Node>();
        openSet.Add(startNode);

        
        while (openSet.Count > 0)
        {
            //根据曼哈顿距离寻找新结点
            Node currentNode = openSet[0];

            for (int i = 0; i < openSet.Count; i++)
            {
                if (openSet[i].fCost < currentNode.fCost || openSet[i].fCost == currentNode.fCost && openSet[i].hCost < currentNode.hCost)
                {
                    currentNode = openSet[i];
                }
            }

            openSet.Remove(currentNode);
            closeSet.Add(currentNode);

            //如果当前结点是最后一个结点,那么寻找结束
            if (currentNode == endNode) {
                GeneratePath(startNode,endNode);
                return;
            }

            //添加周围的可用结点到openSet
            foreach (var node in _grid.GetNeibourhood(currentNode))
            {
                if (!node._walkable || closeSet.Contains(node)) continue;
                int newCost = currentNode.gCost + GetDistanceNodes(currentNode, node);
                if (newCost < node.gCost || !openSet.Contains(node))
                {
                    node.gCost = newCost;
                    node.hCost = GetDistanceNodes(node, endNode);
                    node.parent = currentNode;
                    if (!openSet.Contains(node))
                    {
                        openSet.Add(node);
                    }
                }
            }
        }
    }

    //经典A*算法下的飞行游戏路径查找
    void FindingPathForFly(Vector3 startPos, Vector3 endPos)
    {
        Node startNode = _grid.GetFromPosition(startPos);
        Node endNode = _grid.GetFromPosition(endPos);

        List<Node> openSet = new List<Node>();
        HashSet<Node> closeSet = new HashSet<Node>();
        openSet.Add(startNode);


        while (openSet.Count > 0)
        {
            //根据曼哈顿距离寻找新结点
            Node currentNode = openSet[0];

            for (int i = 0; i < openSet.Count; i++)
            {
                if (openSet[i].fCost < currentNode.fCost || openSet[i].fCost == currentNode.fCost && openSet[i].hCost < currentNode.hCost)
                {
                    currentNode = openSet[i];
                }
            }

            openSet.Remove(currentNode);
            closeSet.Add(currentNode);

            //如果当前结点是最后一个结点,那么寻找结束
            if (currentNode == endNode)
            {
                GeneratePathForFly(startNode, endNode);
                return;
            }

            //添加周围的可用结点到openSet
            foreach (var node in _grid.GetNeibourhood(currentNode))
            {
                if (!node._walkable || closeSet.Contains(node)) continue;
                int newCost = currentNode.gCost + GetDistanceNodes(currentNode, node);
                if (newCost < node.gCost || !openSet.Contains(node))
                {
                    node.gCost = newCost;
                    node.hCost = GetDistanceNodes(node, endNode);
                    node.parent = currentNode;
                    if (!openSet.Contains(node))
                    {
                        openSet.Add(node);
                    }
                }
            }
        }
    }

    //经典A*算法下根据父子关系回溯获得路径
    void GeneratePath(Node startNode,Node endNode)
    {
        List<Node> path = new List<Node>();
        Node temp = endNode;
        while (temp != startNode)//回溯,将所有路径结点结合成路径列表
        {
            path.Add(temp);
            temp = temp.parent;
        }
        path.Reverse();//将列表反转
        _grid.path = path;//将列表交予Grid;
    }

    //经典A*算法下根据父子关系回溯获得路径,并且回溯。如果两个网格点之间没有障碍,可以直达,那么剪除两个网格点之间剪除不要的网格点
    void GeneratePathForFly(Node startNode, Node endNode)
    {
        List<Node> path = new List<Node>();
        Node temp = endNode;
        while (temp != startNode)//回溯,将所有路径网格结合成路径列表
        {
            if(path.Count==0)
                path.Add(temp);

            RaycastHit2D hit;
            //如果前一个网格点与当前网格点的父亲网格之间有障碍,那么表明需要当前网格点,将其添加到路径表中
            if(hit=Physics2D.Raycast(path[path.Count-1]._worldPos, temp.parent._worldPos - path[path.Count - 1]._worldPos,Vector3.Distance(temp.parent._worldPos, path[path.Count - 1]._worldPos)))
            {
                path.Add(temp);
            }

            temp = temp.parent;
        }
        path.Reverse();//将列表反转

        _grid.path = path;//将列表交予Grid;
    }

    //获取两个点之间的曼哈顿距离
    int GetDistanceNodes(Node a,Node b)
    {
        int cntX = Mathf.Abs(a._gridX - b._gridX);
        int cntY = Mathf.Abs(a._gridY - b._gridY);
        if (cntX > cntY)
        {
            return 14 * cntY + 10 * (cntX - cntY);
        }
        else
        {
            return 14 * cntX + 10 * (cntY - cntX);
        }
    }
}

结果

剪除多余的网格点之后

对于不同体积的角色,避免碰撞的处理方案有两种:

第一种:将网格分为不同的层,每层的格子的大小不同。

第二种:寻路时,网格可以走的条件为,walkable为真,且在设定半径范围内没有其他碰撞体存在。

2D飞行游戏最简单AI设计:

1.如果自己与目标之间没有障碍,那么直接飞向目标

2.飞向目标的方式:转向目标方向,如果当前的方向与到目标方向的角度小于设定的某个角度,那么开启喷射引擎。

3.逃离目标:这里以圆形的障碍目标为例,如果检测到障碍,那么设定障碍到自身的方向为目标方向,转向该目标方向,从而逃离目标。由于这个过程中自身的位置 不断变化,目标方向也是变化的,但是获得的结果也更加真实。

原文地址:https://www.cnblogs.com/xiaoahui/p/10612463.html