实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

实验目的

  • 能够独立部署RYU控制器
  • 能够理解RYU控制器实现软件定义的集线器原理
  • 能够理解RYU控制器实现软件定义的交换机原理

二、实验环境

  • 下载虚拟机软件Oracle VisualBox或VMware;
  • 在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

三、实验要求

(一)基本要求

  • 安装截图

  • 查看网络拓扑

  • L2Switch.py文件

      from ryu.base import app_manager
      from ryu.controller import ofp_event
      from ryu.controller.handler import MAIN_DISPATCHER
      from ryu.controller.handler import set_ev_cls
      from ryu.ofproto import ofproto_v1_0

      class L2Switch(app_manager.RyuApp):
          OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

          def __init__(self, *args, **kwargs):
              super(L2Switch, self).__init__(*args, **kwargs)

          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def packet_in_handler(self, ev):
              msg = ev.msg
              dp = msg.datapath
              ofp = dp.ofproto
              ofp_parser = dp.ofproto_parser

              actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

              data = None
              if msg.buffer_id == ofp.OFP_NO_BUFFER:
                   data = msg.data

              out = ofp_parser.OFPPacketOut(
                  datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
                  actions=actions, data = data)
              dp.send_msg(out)

run L2Switch.py

  • h1 ping h2:
  • h1 ping h3
  • 洪泛转发ICMP报文

    看到没有流表
  • pox的hub模块会看到流表

进阶要求

回答下列问题:

      # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
      #
      # Licensed under the Apache License, Version 2.0 (the "License");
      # you may not use this file except in compliance with the License.
      # You may obtain a copy of the License at
      #
      #    http://www.apache.org/licenses/LICENSE-2.0
      #
      # Unless required by applicable law or agreed to in writing, software
      # distributed under the License is distributed on an "AS IS" BASIS,
      # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      # implied.
      # See the License for the specific language governing permissions and
      # limitations under the License.

      # 引入包
      from ryu.base import app_manager
      from ryu.controller import ofp_event
      from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
      from ryu.controller.handler import set_ev_cls
      from ryu.ofproto import ofproto_v1_3
      from ryu.lib.packet import packet
      from ryu.lib.packet import ethernet
      from ryu.lib.packet import ether_types


      class SimpleSwitch13(app_manager.RyuApp):
          # 定义openflow版本
          OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

          def __init__(self, *args, **kwargs):
              super(SimpleSwitch13, self).__init__(*args, **kwargs)
              # 定义保存mac地址到端口的一个映射
              self.mac_to_port = {}

          # 处理EventOFPSwitchFeatures事件
          @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
          def switch_features_handler(self, ev):
              datapath = ev.msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser

              # install table-miss flow entry
              #
              # We specify NO BUFFER to max_len of the output action due to
              # OVS bug. At this moment, if we specify a lesser number, e.g.,
              # 128, OVS will send Packet-In with invalid buffer_id and
              # truncated packet data. In that case, we cannot output packets
              # correctly.  The bug has been fixed in OVS v2.1.0.
              match = parser.OFPMatch()#match:流表项匹配,OFPMatch():不匹配任何信息
              actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                                ofproto.OFPCML_NO_BUFFER)]
              self.add_flow(datapath, 0, match, actions)#添加流表项

          # 添加流表
          def add_flow(self, datapath, priority, match, actions, buffer_id=None):
              # 获取交换机信息
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser

              # 对action进行包装
              inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                   actions)]
              # 判断是否有buffer_id,生成mod对象
              if buffer_id:
                  mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                          priority=priority, match=match,
                                          instructions=inst)
              else:
                  mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                          match=match, instructions=inst)
              # 发送mod
              datapath.send_msg(mod)

          # 触发packet in事件,调用_packet_in_handler
          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def _packet_in_handler(self, ev):
              # If you hit this you might want to increase
              # the "miss_send_length" of your switch
              if ev.msg.msg_len < ev.msg.total_len:
                  self.logger.debug("packet truncated: only %s of %s bytes",
                                    ev.msg.msg_len, ev.msg.total_len)
              # 获取包信息,交换机信息,协议等等
              msg = ev.msg
              datapath = msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
              in_port = msg.match['in_port']

              pkt = packet.Packet(msg.data)
              eth = pkt.get_protocols(ethernet.ethernet)[0]

              # 忽略LLDP类型
              if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                  # ignore lldp packet
                  return

              # 获取源端口和目的端口
              dst = eth.dst
              src = eth.src

              dpid = format(datapath.id, "d").zfill(16)
              self.mac_to_port.setdefault(dpid, {})

              self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

              # 学习包的源地址,绑定交换机上的入端口
              # learn a mac address to avoid FLOOD next time.
              self.mac_to_port[dpid][src] = in_port

              # 查看是否已学习该目的mac地址
              if dst in self.mac_to_port[dpid]:
                  out_port = self.mac_to_port[dpid][dst]
              # 否则进行洪泛
              else:
                  out_port = ofproto.OFPP_FLOOD

              actions = [parser.OFPActionOutput(out_port)]

              # 下发流表处理后续包,不再触发 packet in
              # install a flow to avoid packet_in next time
              if out_port != ofproto.OFPP_FLOOD:
                  match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                  # verify if we have a valid buffer_id, if yes avoid to send both
                  # flow_mod & packet_out
                  if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                      self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                      return
                  else:
                      self.add_flow(datapath, 1, match, actions)
              data = None
              if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                  data = msg.data
      		# 发送Packet_out数据包
              out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                        in_port=in_port, actions=actions, data=data)
              # 发送流表,带上交换机发来的数据包的信息
              datapath.send_msg(out)

a) 代码当中的mac_to_port的作用是什么?
答:mac_to_port保存mac地址到交换机端口的映射。
  
b) simple_switch和simple_switch_13在dpid的输出上有何不同?
答:差别:simple_switch直接输出dpid,simple_switch_13会在dpid前端加上0将其填充至16位。

        #simple_switch.py
        dpid = datapath.id
        self.mac_to_port.setdefault(dpid, {})
        self.logger.info("packet in %s %s %s %s", dpid, src, dst, msg.in_port)
        #simple_switch_13.py
        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {}) 
        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
答:实现交换机以特性应答消息响应特性请求

d) simple_switch_13是如何实现流规则下发的?
答:在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
回答:switch_features_handler下发流表的优先级更高

(三)个人总结

  • 实验难度:
    本次实验基础部分难度较低,进阶部分难度稍高。
    ryu的安装较为简单,且基础部分的实验操作与实验五差别不大,因此感觉不难。
    而进阶部分由需要阅读源码,且需要对openflow协议有一定理解,难度较高,花费了不少时间。
  • 实验中遇到的困难及解决办法
    命令行没找对位置,运行L2Switch.py时试了半天才发现路径不对,最后改了路径成功了
  • 个人感想
    这次基本要求倒是中规中矩,没什么感想。而进阶要求难度不小,有些问题需要真正去阅读代码以及查一些资料相结合才能搞明白,花了不少时间,看来如何高效使用搜索引擎也是一门必修课,还有就是发现注释很重要。
原文地址:https://www.cnblogs.com/xiao-qingjiang/p/15421679.html