[BZOJ1426]收集邮票(概率期望dp)

题面

https://darkbzoj.tk/problem/1426

题解

(Pr(i,j))为买了i次,正好买到j种票的概率。(“正好”的含义是:第i次刚好解锁一种新的票)

则所求答案为(sum_{x}{frac{x(x+1)}{2}}Pr(x,n))

将其拆开,设(sum_x{x^2}Pr(x,i)=f_2[i],sum_x{xPr(x,i)}=f_1[i])

[f_1[i+1]=sumlimits_{x}xPr(x,i+1) ]

[=sumlimits_{x}x{sumlimits_{j=0}^{x-1}}Pr(j,i){frac{i^{x-j-1}*(n-i)}{n^{x-j}}} ]

[={sumlimits_{j=0}^{+infty}}Pr(j,i)sumlimits_{x=j+1}^{+infty}x{frac{i^{x-j-1}*(n-i)}{n^{x-j}}} ]

[={sumlimits_{j=0}^{+infty}}Pr(j,i)sumlimits_{d=1}^{+infty}(d+j){frac{i^{d-1}*(n-i)}{n^{d}}} ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}sumlimits_{d=1}^{+infty}(d+j)(frac{i}{n})^{d} ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}(jsumlimits_{d=1}^{+infty}(frac{i}{n})^{d}+sumlimits_{d=1}^{+infty}d(frac{i}{n})^d) ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}(j*{frac{i}{n-i}}+{frac{ni}{(n-i)^2}}) ]

[=sumlimits_{j=0}^{+infty}Pr(j,i)(j+{frac{n}{(n-i)}}) ]

由于(sum_{j=0}^{+infty}Pr(j,i)j=f_1[i])以及(sum_{j=0}^{+infty}Pr(j,i)=1),得到

[f_1[i+1]=f_1[i]+{frac{n}{n-i}} ]

f2也类似:

[f_2[i+1]=sumlimits_{x}x^2Pr(x,i+1) ]

[=sumlimits_{x}x^2{sumlimits_{j=0}^{x-1}}Pr(j,i){frac{i^{x-j-1}*(n-i)}{n^{x-j}}} ]

[={sumlimits_{j=0}^{+infty}}Pr(j,i)sumlimits_{x=j+1}^{+infty}x^2{frac{i^{x-j-1}*(n-i)}{n^{x-j}}} ]

[={sumlimits_{j=0}^{+infty}}Pr(j,i)sumlimits_{d=1}^{+infty}(d+j)^2{frac{i^{d-1}*(n-i)}{n^{d}}} ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}sumlimits_{d=1}^{+infty}(d^2+2dj+j^2)(frac{i}{n})^{d} ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}(j^2sumlimits_{d=1}^{+infty}(frac{i}{n})^{d}+ 2jsumlimits_{d=1}^{+infty}{d(frac{i}{n})^d}+sumlimits_{d=1}^{+infty}d^2(frac{i}{n})^d) ]

[=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}(j^2{frac{i}{n-i}}+ 2j{frac{ni}{(n-i)^2}}+sumlimits_{d=1}^{+infty}d^2(frac{i}{n})^d) ]

其中(sum_{d=1}^{+infty}d^2(frac{i}{n})^d)可以用扰动法求解:

[S=sumlimits_{d=1}^{+infty}d^2(frac{i}{n})^d ]

[=sumlimits_{d=0}^{+infty}(d+1)^2(frac{i}{n})^{d+1} ]

[=frac{i}{n}sumlimits_{d=0}^{+infty}(d^2+2d+1)(frac{i}{n})^d ]

[=frac{i}{n}(sumlimits_{d=0}^{+infty}d^2(frac{i}{n})^d+2sumlimits_{d=0}^{+infty}d(frac{i}{n})^d+sumlimits_{d=0}^{+infty}(frac{i}{n})^d) ]

[=frac{i}{n}(S+2 imesfrac{ni}{(n-i)^2}+frac{n}{n-i}) ]

所以算出(S=frac{ni^2+n^2i}{(n-i)^3})。代入原式,可得

[f_2[i+1]=sumlimits_{j=0}^{+infty}Pr(j,i){ imes}{frac{n-i}{i}}(j^2{frac{i}{n-i}}+ 2j{frac{ni}{(n-i)^2}}+frac{ni^2+n^2i}{(n-i)^3}) ]

[=sumlimits_{j=0}^{+infty}Pr(j,i)(j^2+frac{2jn}{n-i}+frac{ni+n^2}{(n-i)^2}) ]

[=f_2[i]+frac{2n}{n-i}f_1[i]+frac{ni+n^2}{(n-i)^2} ]

所以有了下面两个式子:

[egin{cases} f_1[i+1]=f_1[i]+{frac{n}{n-i}} \ f_2[i+1]=f_2[i]+frac{2n}{n-i}f_1[i]+frac{ni+n^2}{(n-i)^2} end{cases} ]

就可以展开递推求解(f_1,f_2)。最后的答案就是(frac{f_1[n]+f_2[n]}{2})

代码

此题笔头工作很多,代码几乎没有

#include<bits/stdc++.h>

using namespace std;

#define rg register
#define In inline

const int N = 1e4;

In double sqr(double x){
	return x * x;
}

int n;
double f1[N+5],f2[N+5];

int main(){
	cin >> n;
	for(rg int i = 0;i < n;i++){
		f1[i+1] = f1[i] + 1.0 * n / (n - i);
		f2[i+1] = f2[i] + f1[i] * 2 * n / (n - i) + (n * i + n * n) / sqr(n - i);
	}
	printf("%.2f
",0.5 * (f1[n]+f2[n]));
	return 0;
}
原文地址:https://www.cnblogs.com/xh092113/p/12438705.html