xgboost的遗传算法调参

遗传算法适应度的选择:

机器学习的适应度可以是任何性能指标 —准确度,精确度,召回率,F1分数等等。根据适应度值,我们选择表现最佳的父母(“适者生存”),作为幸存的种群。

交配:

存活下来的群体中的父母将通过交配产生后代,使用两个步骤的组合:交叉/重组和突变。

交叉:交配父母的基因(参数)将被重新组合,产生后代,每个孩子从父母双方遗传一些基因(参数);

突变:一些基因(参数)的值将被改变以保持遗传多样性,这使得遗传算法通常能够得到更好的解决方案。

备注:我们保留幸存的父母,以便保留最好的适应度参数,以防后代的适应度值比父母差。

xgboost超参数搜索遗传算法模块:

模块将具有遵循以下四个步骤的功能:初始化种群,选择,交叉,变异

import numpy as np
import random 
from sklearn.metrics import f1_score
import xgboost 

class GeneticXgboost:
    def __init__(self,num_parents=None):
        """
        param num_parents:种群个体的数量
        
        """
        self.num_parents = num_parents
    
    
    def initilialize_poplulation(self):
        """
        初始化种群,即生成规定数量的种群的基因        
        learning_rate,n_estimators,max_depth,min_child_weightsubsample,olsample_bytree,gamma
        return:array,shape=[self.num_parents,num_gene]        
        """
        learningRate = np.empty([self.num_parents, 1])
        nEstimators  = np.empty([self.num_parents, 1],dtype = np.uint8)
        maxDepth = np.empty([self.num_parents, 1],dtype = np.uint8)
        minChildWeight = np.empty([self.num_parents,1])
        gammaValue = np.empty([self.num_parents,1])
        subSample = np.empty([self.num_parents,1])
        colSampleByTree = np.empty([self.num_parents,1])
        for i in range(self.num_parents): 
            #生成每个个体
            learningRate[i]    = round(np.random.uniform(0.01, 1), 2)
            nEstimators[i]     = int(random.randrange(10, 1500, step = 25))
            maxDepth[i]        = int(random.randrange(1, 10, step=1))
            minChildWeight[i]  = round(random.uniform(0.01, 10.0),2)
            gammaValue[i]      = round(random.uniform(0.01, 10.0),2)
            subSample[i]       = round(random.uniform(0.01, 1.0), 2)
            colSampleByTree[i] = round(random.uniform(0.01, 1.0), 2)
            population = np.concatenate((learningRate,nEstimators,maxDepth,minChildWeight,
                                         gammaValue,subSample,colSampleByTree),axis=1)
        return population
    
    def fitness_function(self,y_true,y_pred):
        """
        定义适应度函数
        """
        fitness = round((f1_score(y_true,y_pred,average='weighted')),4)
        return fitness
    
    
    def fitness_compute(self,population,dMatrixTrain,dMatrixtest,y_test):
        """
        计算适应度值
        param population:  种群
        param dMatrixTrain:训练数据,(X,y)
        param dMatrixtest: 测试数据, (x,y)
        param y_test:      测试数据y
        return 种群中每个个体的适应度值               
        """
        f1_Score = []
        for i in range(population.shape[0]):#遍历种群中的每一个个体
            param = {'objective':       'binary:logistic',
                     'learning_rate':    population[i][0],
                     'n_estimators':     population[i][1], 
                     'max_depth':        int(population[i][2]), 
                     'min_child_weight': population[i][3],
                     'gamma':            population[i][4], 
                     'subsample':        population[i][5],
                     'colsample_bytree': population[i][6],
                     'seed': 24}
            num_round = 100
            model = xgboost.train(param,dMatrixTrain,num_round)
            preds = model.predict(dMatrixtest)
            preds = preds>0.5
            f1 = self.fitness_function(y_test,preds)
            f1_Score.append(f1)
        return f1_Score
    
    def parents_selection(self,population,fitness,num_store):
        """
        根据适应度值来选择保留种群中的个体数量
        param population:种群,shape=[self.num_parents,num_gene]
        param num_store: 需要保留的个体数量  
        param fitness:   适应度值,array
        return 种群中保留的最好个体,shape=[num_store,num_gene]
        """
        #用于存储需要保留的个体
        selectedParents = np.empty((num_store,population.shape[1])) 
        for parentId in range(num_store):
            #找到最大值的索引
            bestFitnessId = np.where(fitness == np.max(fitness))
            bestFitnessId = bestFitnessId[0][0]
            #保存对应的个体基因
            selectedParents[parentId,:] = population[bestFitnessId, :]
            #将提取了值的最大适应度赋值-1,避免再次提取到
            fitness[bestFitnessId] = -1
            
        return selectedParents
    
    def crossover_uniform(self,parents,childrenSize):
        """
        交叉
        我们使用均匀交叉,其中孩子的每个参数将基于特定分布从父母中独立地选择
        param parents:
        param childrenSize:
        return         
        """
        
        crossoverPointIndex = np.arange(0,np.uint8(childrenSize[1]),1,dtype= np.uint8)
        
        crossoverPointIndex1 = np.random.randint(0,np.uint8(childrenSize[1]),
                                                 np.uint8(childrenSize[1]/2))
        
        crossoverPointIndex2 = np.array(list(set(crossoverPointIndex)-set(crossoverPointIndex1)))
        
        children = np.empty(childrenSize)
        
        #将两个父代个体进行交叉
        for i in range(childrenSize[0]): 
            #find parent1 index 
            parent1_index = i%parents.shape[0]
            #find parent 2 index
            parent2_index = (i+1)%parents.shape[0]
            #insert parameters based on random selected indexes in parent1
            children[i,crossoverPointIndex1] = parents[parent1_index,crossoverPointIndex1]
            #insert parameters based on random selected indexes in parent1
            children[i,crossoverPointIndex2] = parents[parent2_index,crossoverPointIndex2]
        return children
    
    def mutation(self, crossover, num_param):
        '''
        突变
        随机选择一个参数并通过随机量改变值来引入子代的多样性
        param crossover:要进行突变的种群
        param num_param:参数的个数
        return         
        '''
        
        #定义每个参数允许的最小值和最大值
        minMaxValue = np.zeros((num_param,2))
        
        minMaxValue[0,:] = [0.01, 1.0]  #min/max learning rate
        minMaxValue[1,:] = [10, 2000]   #min/max n_estimator
        minMaxValue[2,:] = [1, 15]      #min/max depth
        minMaxValue[3,:] = [0, 10.0]    #min/max child_weight
        minMaxValue[4,:] = [0.01, 10.0] #min/max gamma
        minMaxValue[5,:] = [0.01, 1.0]  #min/maxsubsample
        minMaxValue[6,:] = [0.01, 1.0]  #min/maxcolsample_bytree
        
        #突变随机改变每个后代中的单个基因
        mutationValue = 0
        parameterSelect = np.random.randint(0,7,1)
        
        if parameterSelect == 0: 
            #learning_rate
            mutationValue = round(np.random.uniform(-0.5, 0.5), 2)
        if parameterSelect == 1: 
            #n_estimators
            mutationValue = np.random.randint(-200, 200, 1)
        if parameterSelect == 2: 
            #max_depth
            mutationValue = np.random.randint(-5, 5, 1)
        if parameterSelect == 3: 
            #min_child_weight
            mutationValue = round(np.random.uniform(5, 5), 2)
        if parameterSelect == 4: 
            #gamma
            mutationValue = round(np.random.uniform(-2, 2), 2)
        if parameterSelect == 5: 
            #subsample
            mutationValue = round(np.random.uniform(-0.5, 0.5), 2)
        if parameterSelect == 6: 
            #colsample
            mutationValue = round(np.random.uniform(-0.5, 0.5), 2)
            
        #通过更改一个参数来引入变异,如果超出范围则设置为max或min
        for idx in range(crossover.shape[0]):
            crossover[idx, parameterSelect] = crossover[idx,parameterSelect]+mutationValue
            
            if(crossover[idx,parameterSelect]>minMaxValue[parameterSelect,1]):            
                crossover[idx,parameterSelect] = minMaxValue[parameterSelect,1]
            
            if(crossover[idx,parameterSelect] < minMaxValue[parameterSelect,0]):
                crossover[idx,parameterSelect] = minMaxValue[parameterSelect,0]
            
        return crossover    


######################参数收缩测试##############################################
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X,y = load_breast_cancer(return_X_y=True)

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=1)

ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test  = ss.transform(X_test)

xgDMatrixTrain = xgboost.DMatrix(X_train,y_train)
xgbDMatrixTest = xgboost.DMatrix(X_test, y_test)


number_of_parents = 8     #初始种群数量
number_of_generations = 4 #种群繁殖代数,即迭代次数
number_of_parameters = 7  #将被优化的参数数量
number_of_parents_mating = 4  #每代被保留的个体数量

gx = GeneticXgboost(num_parents=number_of_parents)

#定义种群的大小
populationSize = (number_of_parents,number_of_parameters)

#初始种群
population = gx.initilialize_poplulation()
#定义一个数组来存储fitness历史
FitnessHistory = np.empty([number_of_generations+1, number_of_parents])
#定义一个数组来存储每个父节点和生成的每个参数的值
populationHistory = np.empty([(number_of_generations+1)*number_of_parents,
                               number_of_parameters])
#历史记录中插入初始参数的值
populationHistory[0:number_of_parents,:] = population

#训练
for generation in range(number_of_generations):
    print("This is number %s generation" %(generation))
    #train the dataset and obtain fitness
    FitnessValue = gx.fitness_compute(population=population,
                                      dMatrixTrain=xgDMatrixTrain, 
                                      dMatrixtest=xgbDMatrixTest, 
                                      y_test=y_test)
    
    FitnessHistory[generation,:] = FitnessValue
    print('Best F1 score in the iteration = {}'.format(np.max(FitnessHistory[generation,:])))
    #保留的父代
    parents = gx.parents_selection(population=population,
                                                   fitness=FitnessValue,
                                                   num_store=number_of_parents_mating)
    #生成的子代
    children = gx.crossover_uniform(parents=parents, 
                     childrenSize=(populationSize[0]-parents.shape[0],number_of_parameters))
    
    #增加突变以创造遗传多样性
    children_mutated = gx.mutation(children, number_of_parameters)
    
    #创建新的种群,其中将包含以前根据fitness value选择的父代,和生成的子代
    population[0:parents.shape[0], :] = parents 
    population[parents.shape[0]:,  :] = children_mutated
    populationHistory[(generation+1)*number_of_parents:(generation+1)*number_of_parents+number_of_parents,:]=population
    

#最终迭代的最佳解决方案  
fitness = gx.fitness_compute(population=population, 
                             dMatrixTrain=xgDMatrixTrain, 
                             dMatrixtest=xgbDMatrixTest, 
                             y_test=y_test)

bestFitnessIndex = np.where(fitness == np.max(fitness))[0][0]
print("Best fitness is =", fitness[bestFitnessIndex])

print("Best parameters are:")
print('learning_rate=',        population[bestFitnessIndex][0])
print('n_estimators=',         population[bestFitnessIndex][1])
print('max_depth=',            int(population[bestFitnessIndex][2])) 
print('min_child_weight=',     population[bestFitnessIndex][3])
print('gamma=',                population[bestFitnessIndex][4])
print('subsample=',            population[bestFitnessIndex][5])
print('colsample_bytree=',     population[bestFitnessIndex][6]) 

转载:https://www.toutiao.com/i6602143792273293837/

原文地址:https://www.cnblogs.com/wzdLY/p/9700574.html