CF1151FSonya and Informatics

CF1151FSonya and Informatics

给一个长度为 n$ (nleq 100)$的 (0/1) 串,进行 k((k leq 10^9))次操作,每次操作选择两个位置 ((i,j))((i < j)),交换$ i,j$ 上的数,求 (k) 次操作后,该 (0/1) 串变成非降序列的概率,答案对 (10^9+7) 取模。

首先这道题目我们可以想出来一下比较朴素的DP

我们设(sum_0)为原列中(0)个数

我们发现我们不关心序列长什么样子

只关心前(sum_0)个数中(0)个个数

(f_{i,j})表示前(i)次操作之后,还有(j)(0)的方案数

概率可以转化为

[frac{f_{k,sum_0}}{sum_{i = 0}^{sum_0} f_{k,i}} ]

转移就是

(c = frac{n*(n - 1)}{2})表示总的可能情况

[f_{i,j} += f_{i - 1,j - 1}+(sum_0 - (j - 1)) * (sum_0 - (j - 1)) ]

把一个前面的(1)换成(0)前部分有(sum_0- (j - 1))(1),后一部分有(sum_0 - (j - 1))(0),两两配对的方案数

[f_{i,j} += f_{i - 1,j + 1} + (j + 1) * (sum_1 - (sum_0 - (j + 1))) ]

把一个前面的(0)换成(1),组合意义类似上面

[f_{i,j} += f_{i - 1,j} + (c - v_1 - v_2) ]

(v_1,v_2)就是上面两个式子的后面部分

表示没有对前面的(0)的数目产生影响

这之后我们观察一下这个转移每次转移只和(j)有关

我们考虑使用矩阵去优化这个东西

[left[egin{array}{ccccc}{f_{0}[0]} & {f_{-1}[1]} & {0} & {dots} & {0} \ {f_{+1}[0]} & {f_{0}[1]} & {f_{-1}[2]} & {dots} & {0} \ {0} & {f_{+1}[1]} & {f_{0}[2]} & {dots} & {0} \ {dots} & {dots} & {dots} & {dots} & {dots}\{0}&{0}&{0}&{dots} &{f_0[n]}end{array} ight] left[egin{array}{c}{d p[0]} \ {d p[1]} \ {d p[2]} \ {cdots} \ {d p[n]}end{array} ight]=left[egin{array}{c}{d p[0]} \ {d p[1]} \ {d p[2]} \ {cdots} \ {d p[n]}end{array} ight] ]

大约是这个样子

我们这样就完成了一次转移

(k)很大

我们直接上矩阵快速幂就可以了

(mathcal{O}left(n^{3} log k ight))

#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 105;
const LL mod = 1e9 + 7;
int n,k; 
int a[N];
LL sum0,sum1;
inline int read(){
	int v = 0,c = 1;char ch = getchar();
	while(!isdigit(ch)){
		if(ch == '-') c = -1;
		ch = getchar();
	}
	while(isdigit(ch)){
		v = v * 10 + ch - 48;
		ch = getchar();
	}
	return v * c;
}
inline LL up(LL x){
	if(x >= mod) x -= mod;
	return x;	
}
inline LL down(LL x){
	if(x < 0) x += mod;
	return x;	
}
struct Ma{
	LL a[N][N];	
	LL	*operator[](int i){return a[i];}
	inline void clear(){memset(a,0,sizeof(a));}	
	friend Ma operator * (Ma x,Ma y){
		Ma c;c.clear();
		for(int i = 0;i <= n;++i)
			for(int j = 0;j <= n;++j)
				for(int k = 0;k <= n;++k)
					c.a[i][j] = (c.a[i][j] + (x.a[i][k] * y.a[k][j])) % mod;
		return c;
	}
};
Ma s,ss;
inline Ma quick(Ma x,int y){
	Ma res;
	for(int i = 0;i <= n;++i) res[i][i] = 1;
	while(y){
		if(y & 1) res = res * x;
		y >>= 1;
		x = x * x;	
	}
	return res;
}
Ma dp;
LL inv;
inline LL p3(LL x){
	return x * (sum0 - (sum1 - x)) % mod;
}
inline LL p2(LL x){
	LL v1 = sum1 * (sum1 - 1) / 2;
	LL v2 = sum0 * (sum0 - 1) / 2;
	LL v3 = x * (sum1 - x) % mod;
	LL v4 = (sum1 - x) * (sum0 - (sum1 - x)) % mod;
	return (v1 + v2 + v3 + v4) % mod;
}
inline LL p1(LL x){
	return (sum1 - x) * (sum1 - x) % mod;
}
inline LL quickmul(LL x,LL y){
	LL res = 1;
	while(y){
		if(y & 1) res = res * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return res;
}
int main(){
	n = read(),k = read();	
	for(int i = 1;i <= n;++i){
		a[i] = read() ^ 1;	
		sum0 += (a[i] == 0);
		sum1 += (a[i] == 1);
	}
	LL t = 0;
	for(int i = 1;i <= sum1;++i) t += (a[i] == 1);
	dp[t][0] = 1;
	for(int i = 0;i <= sum1;++i){
		if(i > 0) ss.a[i][i - 1] = p1(i - 1);
		ss.a[i][i] = p2(i);
		if(i + 1 <= sum1) ss.a[i][i + 1] = p3(i + 1);	
	}
	Ma ans = quick(ss,k) * dp;
	Ma aa = quick(ss,k);
	LL res = 0;
	for(int i = 0;i <= sum1;++i) res = (res + ans[i][0]) % mod;
	printf("%lld
",ans[sum1][0] * quickmul(res,mod - 2) % mod);
	return 0;
}

原文地址:https://www.cnblogs.com/wyxdrqc/p/11408807.html