ZooKeeper 分布式锁实现

1 场景描述

在分布式应用, 往往存在多个进程提供同一服务. 这些进程有可能在相同的机器上, 也有可能分布在不同的机器上. 如果这些进程共享了一些资源, 可能就需要分布式锁来锁定对这些资源的访问

2 思路

进程需要访问共享数据时, 就在"/locks"节点下创建一个sequence类型的子节点, 称为thisPath当thisPath在所有子节点中最小时, 说明该进程获得了锁. 进程获得锁之后, 就可以访问共享资源了. 访问完成后, 需要将thisPath删除. 锁由新的最小的子节点获得.

有了清晰的思路之后, 还需要补充一些细节. 进程如何知道thisPath是所有子节点中最小的呢? 可以在创建的时候, 通过getChildren方法获取子节点列表, 然后在列表中找到排名比thisPath前1位的节点, 称为waitPath, 然后在waitPath上注册监听, 当waitPath被删除后, 进程获得通知, 此时说明该进程获得了锁.

3 算法

  1. lock操作过程:

    首先为一个lock场景,在zookeeper中指定对应的一个根节点,用于记录资源竞争的内容;

    每个lock创建后,会lazy在zookeeper中创建一个node节点,表明对应的资源竞争标识。 (小技巧:node节点为EPHEMERAL_SEQUENTIAL,自增长的临时节点);

    进行lock操作时,获取对应lock根节点下的所有子节点,也即处于竞争中的资源标识;

    按照Fair(公平)竞争的原则,按照对应的自增内容做排序,取出编号最小的一个节点做为lock的owner,判断自己的节点id是否就为owner id,如果是则返回,lock成功。

    如果自己非owner id,按照排序的结果找到序号比自己前一位的id,关注它锁释放的操作(也就是exist watcher),形成一个链式的触发过程

  2. unlock操作过程:

    将自己id对应的节点删除即可,对应的下一个排队的节点就可以收到Watcher事件,从而被唤醒得到锁后退出

  3. 其中的几个关键点:

    node节点选择为EPHEMERAL_SEQUENTIAL很重要。

    自增长的特性,可以方便构建一个基于Fair特性的锁,前一个节点唤醒后一个节点,形成一个链式的触发过程。可以有效的避免"惊群效应"(一个锁释放,所有等待的线程都被唤醒),有针对性的唤醒,提升性能。

    选择一个EPHEMERAL临时节点的特性。因为和zookeeper交互是一个网络操作,不可控因素过多,比如网络断了,上一个节点释放锁的操作会失败。临时节点是和对应的session挂接的,session一旦超时或者异常退出其节点就会消失,类似于ReentrantLock中等待队列Thread的被中断处理

    获取lock操作是一个阻塞的操作,而对应的Watcher是一个异步事件,所以需要使用互斥信号共享锁BooleanMutex进行通知,可以比较方便的解决锁重入的问题。(锁重入可以理解为多次读操作,锁释放为写抢占操作)

  4. 注意:

    使用EPHEMERAL会引出一个风险:在非正常情况下,网络延迟比较大会出现session timeout,zookeeper就会认为该client已关闭,从而销毁其id标示,竞争资源的下一个id就可以获取锁。这时可能会有两个process同时拿到锁在跑任务,所以设置好session timeout很重要。

    同样使用PERSISTENT同样会存在一个死锁的风险,进程异常退出后,对应的竞争资源id一直没有删除,下一个id一直无法获取到锁对象

4 实现

1. DistributedLock.java源码:分布式锁

  1 package com.king.lock;
  2 
  3 import java.io.IOException;
  4 import java.util.List;
  5 import java.util.SortedSet;
  6 import java.util.TreeSet;
  7 
  8 import org.apache.commons.lang3.StringUtils;
  9 import org.apache.zookeeper.*;
 10 import org.apache.zookeeper.data.Stat;
 11 
 12 /**
 13  * Zookeeper 分布式锁
 14  */
 15 public class DistributedLock {
 16 
 17     private static final int SESSION_TIMEOUT = 10000;
 18 
 19     private static final int DEFAULT_TIMEOUT_PERIOD = 10000;
 20 
 21     private static final String CONNECTION_STRING = "127.0.0.1:2180,127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183";
 22 
 23     private static final byte[] data = {0x12, 0x34};
 24 
 25     private ZooKeeper zookeeper;
 26 
 27     private String root;
 28 
 29     private String id;
 30 
 31     private LockNode idName;
 32 
 33     private String ownerId;
 34 
 35     private String lastChildId;
 36 
 37     private Throwable other = null;
 38 
 39     private KeeperException exception = null;
 40 
 41     private InterruptedException interrupt = null;
 42 
 43     public DistributedLock(String root) {
 44         try {
 45             this.zookeeper = new ZooKeeper(CONNECTION_STRING, SESSION_TIMEOUT, null);
 46             this.root = root;
 47             ensureExists(root);
 48         } catch (IOException e) {
 49             e.printStackTrace();
 50             other = e;
 51         }
 52     }
 53 
 54     /**
 55      * 尝试获取锁操作,阻塞式可被中断
 56      */
 57     public void lock() throws Exception {
 58         // 可能初始化的时候就失败了
 59         if (exception != null) {
 60             throw exception;
 61         }
 62 
 63         if (interrupt != null) {
 64             throw interrupt;
 65         }
 66 
 67         if (other != null) {
 68             throw new Exception("", other);
 69         }
 70 
 71         if (isOwner()) {// 锁重入
 72             return;
 73         }
 74 
 75         BooleanMutex mutex = new BooleanMutex();
 76         acquireLock(mutex);
 77         // 避免zookeeper重启后导致watcher丢失,会出现死锁使用了超时进行重试
 78         try {
 79 //            mutex.lockTimeOut(DEFAULT_TIMEOUT_PERIOD, TimeUnit.MICROSECONDS);// 阻塞等待值为true
 80             mutex.lock();
 81         } catch (Exception e) {
 82             e.printStackTrace();
 83             if (!mutex.state()) {
 84                 lock();
 85             }
 86         }
 87 
 88         if (exception != null) {
 89             throw exception;
 90         }
 91 
 92         if (interrupt != null) {
 93             throw interrupt;
 94         }
 95 
 96         if (other != null) {
 97             throw new Exception("", other);
 98         }
 99     }
100 
101     /**
102      * 尝试获取锁对象, 不会阻塞
103      *
104      * @throws InterruptedException
105      * @throws KeeperException
106      */
107     public boolean tryLock() throws Exception {
108         // 可能初始化的时候就失败了
109         if (exception != null) {
110             throw exception;
111         }
112 
113         if (isOwner()) { // 锁重入
114             return true;
115         }
116 
117         acquireLock(null);
118 
119         if (exception != null) {
120             throw exception;
121         }
122 
123         if (interrupt != null) {
124             Thread.currentThread().interrupt();
125         }
126 
127         if (other != null) {
128             throw new Exception("", other);
129         }
130 
131         return isOwner();
132     }
133 
134     /**
135      * 释放锁对象
136      */
137     public void unlock() throws KeeperException {
138         if (id != null) {
139             try {
140                 zookeeper.delete(root + "/" + id, -1);
141             } catch (InterruptedException e) {
142                 Thread.currentThread().interrupt();
143             } catch (KeeperException.NoNodeException e) {
144                 // do nothing
145             } finally {
146                 id = null;
147             }
148         } else {
149             //do nothing
150         }
151     }
152 
153     /**
154      * 判断某path节点是否存在,不存在就创建
155      * @param path
156      */
157     private void ensureExists(final String path) {
158         try {
159             Stat stat = zookeeper.exists(path, false);
160             if (stat != null) {
161                 return;
162             }
163             zookeeper.create(path, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
164         } catch (KeeperException e) {
165             exception = e;
166         } catch (InterruptedException e) {
167             Thread.currentThread().interrupt();
168             interrupt = e;
169         }
170     }
171 
172     /**
173      * 返回锁对象对应的path
174      */
175     public String getRoot() {
176         return root;
177     }
178 
179     /**
180      * 判断当前是不是锁的owner
181      */
182     public boolean isOwner() {
183         return id != null && ownerId != null && id.equals(ownerId);
184     }
185 
186     /**
187      * 返回当前的节点id
188      */
189     public String getId() {
190         return this.id;
191     }
192 
193     // ===================== helper method =============================
194 
195     /**
196      * 执行lock操作,允许传递watch变量控制是否需要阻塞lock操作
197      */
198     private Boolean acquireLock(final BooleanMutex mutex) {
199         try {
200             do {
201                 if (id == null) { // 构建当前lock的唯一标识
202                     long sessionId = zookeeper.getSessionId();
203                     String prefix = "x-" + sessionId + "-";
204                     // 如果第一次,则创建一个节点
205                     String path = zookeeper.create(root + "/" + prefix, data, ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
206                     int index = path.lastIndexOf("/");
207                     id = StringUtils.substring(path, index + 1);
208                     idName = new LockNode(id);
209                 }
210 
211                 if (id != null) {
212                     List<String> names = zookeeper.getChildren(root, false);
213                     if (names.isEmpty()) {
214                         id = null; // 异常情况,重新创建一个
215                     } else {
216                         // 对节点进行排序
217                         SortedSet<LockNode> sortedNames = new TreeSet<>();
218                         for (String name : names) {
219                             sortedNames.add(new LockNode(name));
220                         }
221 
222                         if (!sortedNames.contains(idName)) {
223                             id = null;// 清空为null,重新创建一个
224                             continue;
225                         }
226 
227                         // 将第一个节点做为ownerId
228                         ownerId = sortedNames.first().getName();
229                         if (mutex != null && isOwner()) {
230                             mutex.unlock();// 直接更新状态,返回
231                             return true;
232                         } else if (mutex == null) {
233                             return isOwner();
234                         }
235 
236                         SortedSet<LockNode> lessThanMe = sortedNames.headSet(idName);
237                         if (!lessThanMe.isEmpty()) {
238                             // 关注一下排队在自己之前的最近的一个节点
239                             LockNode lastChildName = lessThanMe.last();
240                             lastChildId = lastChildName.getName();
241                             // 异步watcher处理
242                             Stat stat = zookeeper.exists(root + "/" + lastChildId, new Watcher() {
243                                 publicvoidprocess(WatchedEvent event) {
244                                     acquireLock(mutex);
245                                 }
246                             });
247 
248                             if (stat == null) {
249                                 acquireLock(mutex);// 如果节点不存在,需要自己重新触发一下,watcher不会被挂上去
250                             }
251                         } else {
252                             if (isOwner()) {
253                                 mutex.unlock();
254                             } else {
255                                 id = null;// 可能自己的节点已超时挂了,所以id和ownerId不相同
256                             }
257                         }
258                     }
259                 }
260             } while (id == null);
261         } catch (KeeperException e) {
262             exception = e;
263             if (mutex != null) {
264                 mutex.unlock();
265             }
266         } catch (InterruptedException e) {
267             interrupt = e;
268             if (mutex != null) {
269                 mutex.unlock();
270             }
271         } catch (Throwable e) {
272             other = e;
273             if (mutex != null) {
274                 mutex.unlock();
275             }
276         }
277 
278         if (isOwner() && mutex != null) {
279             mutex.unlock();
280         }
281         return Boolean.FALSE;
282     }
283 }
View Code

2. BooleanMutex.java源码:互斥信号共享锁

  1 package com.king.lock;
  2 
  3 import java.util.concurrent.TimeUnit;
  4 import java.util.concurrent.TimeoutException;
  5 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
  6 
  7 /**
  8  * 互斥信号共享锁
  9  */
 10 public class BooleanMutex {
 11 
 12     private Sync sync;
 13 
 14     public BooleanMutex() {
 15         sync = new Sync();
 16         set(false);
 17     }
 18 
 19     /**
 20      * 阻塞等待Boolean为true
 21      * @throws InterruptedException
 22      */
 23     public void lock() throws InterruptedException {
 24         sync.innerLock();
 25     }
 26 
 27     /**
 28      * 阻塞等待Boolean为true,允许设置超时时间
 29      * @param timeout
 30      * @param unit
 31      * @throws InterruptedException
 32      * @throws TimeoutException
 33      */
 34     public void lockTimeOut(long timeout, TimeUnit unit) throws InterruptedException, TimeoutException {
 35         sync.innerLock(unit.toNanos(timeout));
 36     }
 37 
 38     public void unlock(){
 39         set(true);
 40     }
 41 
 42     /**
 43      * 重新设置对应的Boolean mutex
 44      * @param mutex
 45      */
 46     public void set(Boolean mutex) {
 47         if (mutex) {
 48             sync.innerSetTrue();
 49         } else {
 50             sync.innerSetFalse();
 51         }
 52     }
 53 
 54     public boolean state() {
 55         return sync.innerState();
 56     }
 57 
 58     /**
 59      * 互斥信号共享锁
 60      */
 61     private final class Sync extends AbstractQueuedSynchronizer {
 62         private static final long serialVersionUID = -7828117401763700385L;
 63 
 64         /**
 65          * 状态为1,则唤醒被阻塞在状态为FALSE的所有线程
 66          */
 67         private static final int TRUE = 1;
 68         /**
 69          * 状态为0,则当前线程阻塞,等待被唤醒
 70          */
 71         private static final int FALSE = 0;
 72 
 73         /**
 74          * 返回值大于0,则执行;返回值小于0,则阻塞
 75          */
 76         protected int tryAcquireShared(int arg) {
 77             return getState() == 1 ? 1 : -1;
 78         }
 79 
 80         /**
 81          * 实现AQS的接口,释放共享锁的判断
 82          */
 83         protected boolean tryReleaseShared(int ignore) {
 84             // 始终返回true,代表可以release
 85             return true;
 86         }
 87 
 88         privatebooleaninnerState() {
 89             return getState() == 1;
 90         }
 91 
 92         privatevoidinnerLock()throws InterruptedException {
 93             acquireSharedInterruptibly(0);
 94         }
 95 
 96         privatevoidinnerLock(long nanosTimeout)throws InterruptedException, TimeoutException {
 97             if (!tryAcquireSharedNanos(0, nanosTimeout))
 98                 throw new TimeoutException();
 99         }
100 
101         privatevoidinnerSetTrue() {
102             for (;;) {
103                 int s = getState();
104                 if (s == TRUE) {
105                     return; // 直接退出
106                 }
107                 if (compareAndSetState(s, TRUE)) {// cas更新状态,避免并发更新true操作
108                     releaseShared(0);// 释放一下锁对象,唤醒一下阻塞的Thread
109                 }
110             }
111         }
112 
113         privatevoidinnerSetFalse() {
114             for (;;) {
115                 int s = getState();
116                 if (s == FALSE) {
117                     return; //直接退出
118                 }
119                 if (compareAndSetState(s, FALSE)) {//cas更新状态,避免并发更新false操作
120                     setState(FALSE);
121                 }
122             }
123         }
124     }
125 }
View Code

3. 相关说明:

输入图片说明

4. 测试类:

  1 package com.king.lock;
  2 
  3 import java.util.concurrent.CountDownLatch;
  4 import java.util.concurrent.ExecutorService;
  5 import java.util.concurrent.Executors;
  6 
  7 import org.apache.zookeeper.KeeperException;
  8 
  9 /**
 10  * 分布式锁测试
 11  * @author taomk
 12  * @version 1.0
 13  * @since 15-11-19 上午11:48
 14  */
 15 public class DistributedLockTest {
 16 
 17     public static void main(String [] args) {
 18         ExecutorService executor = Executors.newCachedThreadPool();
 19         final int count = 50;
 20         final CountDownLatch latch = new CountDownLatch(count);
 21         for (int i = 0; i < count; i++) {
 22             final DistributedLock node = new DistributedLock("/locks");
 23             executor.submit(new Runnable() {
 24                 public void run() {
 25                     try {
 26                         Thread.sleep(1000);
 27 //                        node.tryLock(); // 无阻塞获取锁
 28                         node.lock(); // 阻塞获取锁
 29                         Thread.sleep(100);
 30 
 31                         System.out.println("id: " + node.getId() + " is leader: " + node.isOwner());
 32                     } catch (InterruptedException e) {
 33                         e.printStackTrace();
 34                     } catch (KeeperException e) {
 35                         e.printStackTrace();
 36                     } catch (Exception e) {
 37                         e.printStackTrace();
 38                     } finally {
 39                         latch.countDown();
 40                         try {
 41                             node.unlock();
 42                         } catch (KeeperException e) {
 43                             e.printStackTrace();
 44                         }
 45                     }
 46 
 47                 }
 48             });
 49         }
 50 
 51         try {
 52             latch.await();
 53         } catch (InterruptedException e) {
 54             e.printStackTrace();
 55         }
 56 
 57         executor.shutdown();
 58     }
 59 }
 60 控制台输出:
 61 
 62 id: x-239027745716109354-0000000248 is leader: true
 63 id: x-22854963329433645-0000000249 is leader: true
 64 id: x-22854963329433646-0000000250 is leader: true
 65 id: x-166970151413415997-0000000251 is leader: true
 66 id: x-166970151413415998-0000000252 is leader: true
 67 id: x-166970151413415999-0000000253 is leader: true
 68 id: x-166970151413416000-0000000254 is leader: true
 69 id: x-166970151413416001-0000000255 is leader: true
 70 id: x-166970151413416002-0000000256 is leader: true
 71 id: x-22854963329433647-0000000257 is leader: true
 72 id: x-239027745716109355-0000000258 is leader: true
 73 id: x-166970151413416003-0000000259 is leader: true
 74 id: x-94912557367427124-0000000260 is leader: true
 75 id: x-22854963329433648-0000000261 is leader: true
 76 id: x-239027745716109356-0000000262 is leader: true
 77 id: x-239027745716109357-0000000263 is leader: true
 78 id: x-166970151413416004-0000000264 is leader: true
 79 id: x-239027745716109358-0000000265 is leader: true
 80 id: x-239027745716109359-0000000266 is leader: true
 81 id: x-22854963329433649-0000000267 is leader: true
 82 id: x-22854963329433650-0000000268 is leader: true
 83 id: x-94912557367427125-0000000269 is leader: true
 84 id: x-22854963329433651-0000000270 is leader: true
 85 id: x-94912557367427126-0000000271 is leader: true
 86 id: x-239027745716109360-0000000272 is leader: true
 87 id: x-94912557367427127-0000000273 is leader: true
 88 id: x-94912557367427128-0000000274 is leader: true
 89 id: x-166970151413416005-0000000275 is leader: true
 90 id: x-94912557367427129-0000000276 is leader: true
 91 id: x-166970151413416006-0000000277 is leader: true
 92 id: x-94912557367427130-0000000278 is leader: true
 93 id: x-94912557367427131-0000000279 is leader: true
 94 id: x-239027745716109361-0000000280 is leader: true
 95 id: x-239027745716109362-0000000281 is leader: true
 96 id: x-166970151413416007-0000000282 is leader: true
 97 id: x-94912557367427132-0000000283 is leader: true
 98 id: x-22854963329433652-0000000284 is leader: true
 99 id: x-166970151413416008-0000000285 is leader: true
100 id: x-239027745716109363-0000000286 is leader: true
101 id: x-239027745716109364-0000000287 is leader: true
102 id: x-166970151413416009-0000000288 is leader: true
103 id: x-166970151413416010-0000000289 is leader: true
104 id: x-239027745716109365-0000000290 is leader: true
105 id: x-94912557367427133-0000000291 is leader: true
106 id: x-239027745716109366-0000000292 is leader: true
107 id: x-94912557367427134-0000000293 is leader: true
108 id: x-22854963329433653-0000000294 is leader: true
109 id: x-94912557367427135-0000000295 is leader: true
110 id: x-239027745716109367-0000000296 is leader: true
111 id: x-239027745716109368-0000000297 is leader: true
View Code

5 升级版

实现了一个分布式lock后,可以解决多进程之间的同步问题,但设计多线程+多进程的lock控制需求,单jvm中每个线程都和zookeeper进行网络交互成本就有点高了,所以基于DistributedLock,实现了一个分布式二层锁。

大致原理就是ReentrantLock 和 DistributedLock的一个结合:

  1. 单jvm的多线程竞争时,首先需要先拿到第一层的ReentrantLock的锁
  2. 拿到锁之后这个线程再去和其他JVM的线程竞争锁,最后拿到之后锁之后就开始处理任务

锁的释放过程是一个反方向的操作,先释放DistributedLock,再释放ReentrantLock。 可以思考一下,如果先释放ReentrantLock,假如这个JVM ReentrantLock竞争度比较高,一直其他JVM的锁竞争容易被饿死

1. DistributedReentrantLock.java源码:多进程+多线程分布式锁

 1 package com.king.lock;
 2 
 3 import java.text.MessageFormat;
 4 import java.util.concurrent.locks.ReentrantLock;
 5 
 6 import org.apache.zookeeper.KeeperException;
 7 
 8 /**
 9  * 多进程+多线程分布式锁
10  */
11 public class DistributedReentrantLock extends DistributedLock {
12 
13     private static final String ID_FORMAT = "Thread[{0}] Distributed[{1}]";
14     private ReentrantLock reentrantLock = new ReentrantLock();
15 
16     public DistributedReentrantLock(String root) {
17         super(root);
18     }
19 
20     public void lock() throws Exception {
21         reentrantLock.lock();//多线程竞争时,先拿到第一层锁
22         super.lock();
23     }
24 
25     public boolean tryLock() throws Exception {
26         //多线程竞争时,先拿到第一层锁
27         return reentrantLock.tryLock() && super.tryLock();
28     }
29 
30     public void unlock() throws KeeperException {
31         super.unlock();
32         reentrantLock.unlock();//多线程竞争时,释放最外层锁
33     }
34 
35     @Override
36     public String getId() {
37         return MessageFormat.format(ID_FORMAT, Thread.currentThread().getId(), super.getId());
38     }
39 
40     @Override
41     public boolean isOwner() {
42         return reentrantLock.isHeldByCurrentThread() && super.isOwner();
43     }
44 }
View Code

2. 测试代码:

 1 package com.king.lock;
 2 
 3 import java.util.concurrent.CountDownLatch;
 4 import java.util.concurrent.ExecutorService;
 5 import java.util.concurrent.Executors;
 6 
 7 import org.apache.zookeeper.KeeperException;
 8 
 9 /**
10  * @author taomk
11  * @version 1.0
12  * @since 15-11-23 下午12:15
13  */
14 public class DistributedReentrantLockTest {
15 
16     public static void main(String [] args) {
17         ExecutorService executor = Executors.newCachedThreadPool();
18         final int count = 50;
19         final CountDownLatch latch = new CountDownLatch(count);
20 
21         final DistributedReentrantLock lock = new DistributedReentrantLock("/locks"); //单个锁
22         for (int i = 0; i < count; i++) {
23             executor.submit(new Runnable() {
24                 public void run() {
25                     try {
26                         Thread.sleep(1000);
27                         lock.lock();
28                         Thread.sleep(100);
29 
30                         System.out.println("id: " + lock.getId() + " is leader: " + lock.isOwner());
31                     } catch (Exception e) {
32                         e.printStackTrace();
33                     } finally {
34                         latch.countDown();
35                         try {
36                             lock.unlock();
37                         } catch (KeeperException e) {
38                             e.printStackTrace();
39                         }
40                     }
41                 }
42             });
43         }
44 
45         try {
46             latch.await();
47         } catch (InterruptedException e) {
48             e.printStackTrace();
49         }
50 
51         executor.shutdown();
52     }
53 }
View Code

6 最后

其实再可以发散一下,实现一个分布式的read/write lock,也差不多就是这个理了。大致思路:

  1. 竞争资源标示: read_自增id , write_自增id
  2. 首先按照自增id进行排序,如果队列的前边都是read标识,对应的所有read都获得锁如果队列的前边是write标识,第一个write节点获取锁
  3. watcher监听: read监听距离自己最近的一个write节点的existwrite监听距离自己最近的一个节点(read或者write节点)
原文地址:https://www.cnblogs.com/wxd0108/p/6264748.html