bzoj1025 [SCOI2009]游戏(置换+分组背包)

Description
  windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按
顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们
对应的数字。如此反复,直到序列再次变为1,2,3,……,N。
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6
windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可
能的排数。

Input
  包含一个整数N,1 <= N <= 1000

Output
  包含一个整数,可能的排数。

Sample Input
【输入样例一】
3
【输入样例二】
10

Sample Output
【输出样例一】
3
【输出样例二】
16

分析:
如果我们把置换写成几个轮换的形式,
假设每个轮换的元素个数为a[1],a[2]…a[n],
那么对于这个置换来说进行lcm(a[1],a[2],…,a[n])次就可以变回最初的形式。
那么这道题其实就变成了和为n,lcm的种类数。
lcm至于每个质数的最高次有关,
所以我们只要确定了每个质数的最高次就能唯一的确定lcm。

那么我们可以预处理质数,
那么质数pi,pi^2,pi^3,pi^n当做同组的物品,
对于同组的物品只能选一个或者都不选,总和为i的方案数。这样子选出来的lcm一定是两两不同的。

还有个问题就是i < n的方案要不要算呢?
是要算的
因为我们只确定了最高次,
那么剩下的只要不超过最高次都可以选,只要用1来填补一定可以得到总和为n的方案。
那么我们就把问题转换成了经典的分组背包问题。
最后的答案就是∑f[i]
其中f[i]表示和为i的方案数。

发现自己的分组背包连循环顺序都不是很清楚:
使用一维数组的伪代码如下:

for 所有的组k
    for v=V..0
        for 所有的i属于组k
            f[v]=max{f[v],f[v-c[i]]+w[i]}

tip

好好研读背包九讲

这里写代码片
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long

using namespace std;

const int N=1003;
int n,m,sshu[N],tot=0;
bool no[N];
ll f[N],ans;

void cl()
{
    memset(no,0,sizeof(no));
    for (int i=2;i<=n;i++)
    {
        if (!no[i]) 
           sshu[++tot]=i;
        for (int j=1;j<=tot&&sshu[j]*i<=n;j++)
        {
            no[sshu[j]*i]=1;
            if (i%sshu[j]==0) break;
        }
    }
}

int main()
{
    scanf("%d",&n);
    m=n;
    cl();
    f[0]=1;
    for (int i=1;i<=tot;i++)
        for (int j=m;j>=0;j--)
        {
            int now=sshu[i];
            while (j>=now){
                f[j]+=f[j-now];
                now*=sshu[i];
            }
        }
    for (int i=0;i<=n;i++) ans+=f[i];
    printf("%lld",ans);
    return 0;
}
原文地址:https://www.cnblogs.com/wutongtong3117/p/7673126.html