I2C裸机驱动程序设计

① I2C(Inter-Integrated Circuit)总线是由飞利浦公司开发的两线式串行总线,用于连接微控制器及其外围设备

② I2C总线有两根双向信号线

(1)SDA:Serial Data Line(数据线)

(2)SCL:Serial CLock Line(时钟线)

③ I2C总线寻址

(1)I2C总线协议规定,从设备采用7位的地址。

  * D7~D0:从设备地址

  * D0位:数据的传送方向。“0”表示主设备向从设备写数据;“1”表示主设备由从设备读数据

  注:主设备发送地址时,总线上的每个从设备都将这7位地址与自己的地址进行比较,如果相同,则认为是自己正被主设备寻址,根据R/W位将自己确定为发送器或者接收器

(2)从设备的地址由固定部分和用户自定义部分组成。

  * 固定部分:D7-D4 共4位。这是由从设备的生产厂商生产时就已确定的值。

  * 用户自定义部分:D3-D1 共3位。这3位通常对应设备的3个引脚(A0~A2)。把3个引脚接到不同的电平上,就可以形成一个3位的数值。

④ I2C总线时序

(1)空闲状态:I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。

(2)起始状态:在时钟线SCL保持高电平期间,数据线SDA上的电平被拉低(即负跳变),定义为I2C总线总线的启动信号,它标志着一次数据传输的开始

(3)结束状态:在时钟线SCL保持高电平时,数据线SDA被释放,使得SDA返回高电平(即正跳变),称为I2C总线的停止信号

(4)数据传送:I2C总线上的所有数据(地址和数据)都是以8位一个字节为单位传送的

(5)应答位:发送器每发送一个字节,就在时钟脉冲第9位释放数据线,由接收器反馈一个应答信号。应答信号为低电平时,定为有效应答位ACK,表示接收器已经成功地接收了该字节;应答信号为高电平时,定为非应答位(NACK),表示接收器没有成功接收该字节

  注:I2C接口会在SCL为高电平期间对SDA状态进行采样,所以SDA高低位的变换应该在SCL是低电平期间完成。所以SDA的高电平脉冲要要比SCL略宽。

⑤ 基于S3C2440的I2C裸机代码:

#include "GlobalDefine.h"
#include "Error.h"
#include "Common.h"
#include "I2c.h"

#include "ModManager.h"
#include "../Protocol/inc/I2cProtocol.h"

#define INTPND (*(volatile unsigned long*)0x4a000010)
#define SRCPND (*(volatile unsigned long*)0x4a000000)
#define INTMSK (*(volatile unsigned long*)0x4a000008)
#define GPECON (*(volatile unsigned long*)0x56000040)
#define GPEUP  (*(volatile unsigned long*)0x56000048)

#define IICCON    (*(volatile unsigned char*)0x54000000)
#define IICSTAT   (*(volatile unsigned char*)0x54000004)
#define IICDS     (*(volatile unsigned char*)0x5400000C)

#define SLAVE_WRITE_ADDR 0xa0
#define SLAVE_READ_ADDR 0xa1

static void I2cDelay(int i)
{
   int j = 0;
   while (i--)    
   {
       for (j = 0; j < 100; j++)
       {    
           ;
       }  
   }    
}

static void I2cInit()
{
    //1 Interrupt Initialize
    INTPND |= (1 << 27);
    SRCPND |= (1 << 27);  
    INTMSK &= ~(1 << 27);
     
    IICCON |= (1 << 5); 
    
    //2 Set I2C-Bus transmit clock
    IICCON &= ~(1 << 6);
    IICCON &= ~(0xf << 0);
    IICCON |= (0x5 << 0);
    
    //3. Set IIC-bus data output enable
    IICSTAT |= (1 << 4);
    
    //4. Set GPIO pin function
    GPECON |= (0x2 << 28)|(0x2 << 30);
    GPEUP |= (0x3 << 14);
    
    //5. Set IIC-bus acknowledge enable
    IICCON |= (1 << 7);
}

static void I2cWriteByte(unsigned char data, unsigned char addr)
{    
    //1. Set to Master-Transmit mode
    IICSTAT |= (3 << 6);
    
    //2. Write slave device address
    IICDS = SLAVE_WRITE_ADDR;
    IICCON &= ~(1 << 4);
    
    //3. Write 0xF0 to IICSTAT.(Generate START signal) 
    IICSTAT = 0xF0;
    
    // Wait Ack
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
    
    //4. Write address in chip to IICDS
    IICDS = addr;
    IICCON &= ~(1 << 4);
    
    // Wait Ack
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
    
    //5. Write data to IICDS
    IICDS = data;
    IICCON &= ~(1 << 4);   
    
    // Wait Ack
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
    
    //6. Write 0xD0 to IICSTAT(Generate STOP signal)
    IICSTAT = 0xD0;
    
    //7. Clear Interrupt
    IICCON &= ~(1 << 4);    
    
    I2cDelay(100);
}

static void I2cReadBytes(unsigned char addr, int length, unsigned char *buf)
{
    int j = 0;
    unsigned char unusedata;
    
    //1. Set to Master-Transmit mode
    IICSTAT |= (3 << 6);
    
    //2. Write slave device write address
    IICDS = SLAVE_WRITE_ADDR;
    IICCON &= ~(1 << 4);
    
    //3. Write 0xF0 to IICSTAT
    IICSTAT = 0xF0;
    
    //Wait ACK
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
    
    //4. Write address in the eeprom
    IICDS = addr;
    IICCON &= ~(1 << 4);
    
    // Wait ACK
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
             
    //5. Set to Master-Receive mode
    IICSTAT &= ~(3 << 6);
    IICSTAT |= (2 << 6);
    
    //6. Write slave device read address
    IICDS = SLAVE_READ_ADDR;
    IICCON &= ~(1 << 4);
    
    //7. Write 0xB0 to IICSTAT for starting to receive
    IICSTAT = 0xb0;
    while ((IICCON & (1 << 4)) == 0 )
        I2cDelay(100);
    
    //8. Write address in chip
    IICDS = addr;
    IICCON &= ~(1 << 4);
    
    while((IICCON & (1 << 4)) == 0)
    {
        I2cDelay(100);
    }
  
    for(j = 0; j < length; j++)
    {
        if(j == (length - 1))
        {
           IICCON &= ~(1 << 7);         
        }
   
        buf[j] = IICDS;
        
        // Clear Interrupt
        IICCON &= ~(1 << 4);
    
        // Wait for Interrupt
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
    }
    
    //9. Write 0x90 to IICSTAT(Generate STOP signal)
    IICSTAT = 0x90;
    
    //10. Clear Interrupt
    IICCON &= ~(1 << 4);
}

I2cModeOps i2cModeOps = {
    .I2cInit = I2cInit,
    .I2cWriteByte = I2cWriteByte,
    .I2cReadBytes = I2cReadBytes,
};

MODULE_INSTALL(I2c, MOD_I2C, 0, &i2cModeOps);
原文地址:https://www.cnblogs.com/wulei0630/p/9582203.html