pytorch空间变换网络

pytorch空间变换网络

 

 本文将学习如何使用称为空间变换器网络的视觉注意机制来扩充网络。可以在DeepMind paper 阅读更多有关空间变换器网络的内容。

空间变换器网络是对任何空间变换的差异化关注的概括。空间变换器网络(简称STN)允许神经网络学习如何在输入图像上执行空间变换, 以增强模型的几何不变性。例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向。而这可能是一种有用的机制,因为CNN对于旋转和 缩放以及更一般的仿射变换并不是不变的。

STN的最棒的事情之一,能够简单地将其插入任何现有的CNN,而且只需很少的修改。

from __future__ import print_function

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torchvision

from torchvision import datasets, transforms

import matplotlib.pyplot as plt

import numpy as np

 

plt.ion()   # 交互模式

1.加载数据

尝试了经典的 MNIST 数据集。使用标准卷积网络增强空间变换器网络。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 

# 训练数据集

train_loader = torch.utils.data.DataLoader(

    datasets.MNIST(root='.', train=True, download=True,

                   transform=transforms.Compose([

                       transforms.ToTensor(),

                       transforms.Normalize((0.1307,), (0.3081,))

                   ])), batch_size=64, shuffle=True, num_workers=4)

# 测试数据集

test_loader = torch.utils.data.DataLoader(

    datasets.MNIST(root='.', train=False, transform=transforms.Compose([

        transforms.ToTensor(),

        transforms.Normalize((0.1307,), (0.3081,))

    ])), batch_size=64, shuffle=True, num_workers=4)

  • 输出结果

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./MNIST/raw/train-images-idx3-ubyte.gz

Extracting ./MNIST/raw/train-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz

Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./MNIST/raw/t10k-images-idx3-ubyte.gz

Extracting ./MNIST/raw/t10k-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz

Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz

Processing...

Done!

2.什么是空间变换网络?

空间变换器网络归结为三个主要组成部分:

  • 本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中明确地学习转换,而是网络自动学习增强全局准确性的空间变换。
  • 网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
  • 采样器(Sampler)使用变换的参数并将其应用于输入图像。

 

 注意:使用最新版本的Pytorch,它应该包含affine_grid和grid_sample模块。

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

        self.conv2_drop = nn.Dropout2d()

        self.fc1 = nn.Linear(320, 50)

        self.fc2 = nn.Linear(50, 10)

 

        # 空间变换器定位 - 网络

        self.localization = nn.Sequential(

            nn.Conv2d(1, 8, kernel_size=7),

            nn.MaxPool2d(2, stride=2),

            nn.ReLU(True),

            nn.Conv2d(8, 10, kernel_size=5),

            nn.MaxPool2d(2, stride=2),

            nn.ReLU(True)

        )

 

        # 3 * 2 affine矩阵的回归量

        self.fc_loc = nn.Sequential(

            nn.Linear(10 * 3 * 3, 32),

            nn.ReLU(True),

            nn.Linear(32, 3 * 2)

        )

 

        # 使用身份转换初始化权重/偏差

        self.fc_loc[2].weight.data.zero_()

        self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

 

    # 空间变换器网络转发功能

    def stn(self, x):

        xs = self.localization(x)

        xs = xs.view(-1, 10 * 3 * 3)

        theta = self.fc_loc(xs)

        theta = theta.view(-1, 2, 3)

 

        grid = F.affine_grid(theta, x.size())

        x = F.grid_sample(x, grid)

 

        return x

 

    def forward(self, x):

        # transform the input

        x = self.stn(x)

 

        # 执行一般的前进传递

        x = F.relu(F.max_pool2d(self.conv1(x), 2))

        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        x = x.view(-1, 320)

        x = F.relu(self.fc1(x))

        x = F.dropout(x, training=self.training)

        x = self.fc2(x)

        return F.log_softmax(x, dim=1)

 

 

model = Net().to(device)

3.训练模型

训练模型

使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分类任务。同时,该模型以端到端的方式自动学习STN。

optimizer = optim.SGD(model.parameters(), lr=0.01)

 

def train(epoch):

    model.train()

    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device)

 

        optimizer.zero_grad()

        output = model(data)

        loss = F.nll_loss(output, target)

        loss.backward()

        optimizer.step()

        if batch_idx % 500 == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)] Loss: {:.6f}'.format(

                epoch, batch_idx * len(data), len(train_loader.dataset),

                100. * batch_idx / len(train_loader), loss.item()))

#

# 一种简单的测试程序,用于测量STNMNIST上的性能。.

#

 

def test():

    with torch.no_grad():

        model.eval()

        test_loss = 0

        correct = 0

        for data, target in test_loader:

            data, target = data.to(device), target.to(device)

            output = model(data)

 

            # 累加批量损失

            test_loss += F.nll_loss(output, target, size_average=False).item()

            # 获取最大对数概率的索引

            pred = output.max(1, keepdim=True)[1]

            correct += pred.eq(target.view_as(pred)).sum().item()

 

        test_loss /= len(test_loader.dataset)

        print(' Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%) '

              .format(test_loss, correct, len(test_loader.dataset),

                      100. * correct / len(test_loader.dataset)))

4.可视化 STN 结果

检查学习的视觉注意机制的结果。

定义了一个小辅助函数,以便在训练时可视化变换。

def convert_image_np(inp):

    """Convert a Tensor to numpy image."""

    inp = inp.numpy().transpose((1, 2, 0))

    mean = np.array([0.485, 0.456, 0.406])

    std = np.array([0.229, 0.224, 0.225])

    inp = std * inp + mean

    inp = np.clip(inp, 0, 1)

    return inp

 

# 我们想要在训练之后可视化空间变换器层的输出

# 我们使用STN可视化一批输入图像和相应的变换批次。

def visualize_stn():

    with torch.no_grad():

        # Get a batch of training data

        data = next(iter(test_loader))[0].to(device)

 

        input_tensor = data.cpu()

        transformed_input_tensor = model.stn(data).cpu()

 

        in_grid = convert_image_np(

            torchvision.utils.make_grid(input_tensor))

 

        out_grid = convert_image_np(

            torchvision.utils.make_grid(transformed_input_tensor))

 

        # Plot the results side-by-side

        f, axarr = plt.subplots(1, 2)

        axarr[0].imshow(in_grid)

        axarr[0].set_title('Dataset Images')

 

        axarr[1].imshow(out_grid)

        axarr[1].set_title('Transformed Images')

 

for epoch in range(1, 20 + 1):

    train(epoch)

    test()

 

# 在某些输入批处理上可视化STN转换

visualize_stn()

 

plt.ioff()

plt.show()

  • 输出结果

 

 Train Epoch: 1 [0/60000 (0%)]   Loss: 2.336866

Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.841600

 

Test set: Average loss: 0.2624, Accuracy: 9212/10000 (92%)

 

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.527656

Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.428908

 

Test set: Average loss: 0.1176, Accuracy: 9632/10000 (96%)

 

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.305364

Train Epoch: 3 [32000/60000 (53%)]      Loss: 0.263615

 

Test set: Average loss: 0.1099, Accuracy: 9677/10000 (97%)

 

Train Epoch: 4 [0/60000 (0%)]   Loss: 0.169776

Train Epoch: 4 [32000/60000 (53%)]      Loss: 0.408683

 

Test set: Average loss: 0.0861, Accuracy: 9734/10000 (97%)

 

Train Epoch: 5 [0/60000 (0%)]   Loss: 0.286635

Train Epoch: 5 [32000/60000 (53%)]      Loss: 0.122162

 

Test set: Average loss: 0.0817, Accuracy: 9743/10000 (97%)

 

Train Epoch: 6 [0/60000 (0%)]   Loss: 0.331074

Train Epoch: 6 [32000/60000 (53%)]      Loss: 0.126413

 

Test set: Average loss: 0.0589, Accuracy: 9822/10000 (98%)

 

Train Epoch: 7 [0/60000 (0%)]   Loss: 0.109780

Train Epoch: 7 [32000/60000 (53%)]      Loss: 0.172199

 

Test set: Average loss: 0.0629, Accuracy: 9814/10000 (98%)

 

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.078934

Train Epoch: 8 [32000/60000 (53%)]      Loss: 0.156452

 

Test set: Average loss: 0.0563, Accuracy: 9839/10000 (98%)

 

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.063500

Train Epoch: 9 [32000/60000 (53%)]      Loss: 0.186023

 

Test set: Average loss: 0.0713, Accuracy: 9799/10000 (98%)

 

Train Epoch: 10 [0/60000 (0%)]  Loss: 0.199808

Train Epoch: 10 [32000/60000 (53%)]     Loss: 0.083502

 

Test set: Average loss: 0.0528, Accuracy: 9850/10000 (98%)

 

Train Epoch: 11 [0/60000 (0%)]  Loss: 0.092909

Train Epoch: 11 [32000/60000 (53%)]     Loss: 0.204410

 

Test set: Average loss: 0.0471, Accuracy: 9857/10000 (99%)

 

Train Epoch: 12 [0/60000 (0%)]  Loss: 0.078322

Train Epoch: 12 [32000/60000 (53%)]     Loss: 0.041391

 

Test set: Average loss: 0.0634, Accuracy: 9796/10000 (98%)

 

Train Epoch: 13 [0/60000 (0%)]  Loss: 0.061228

Train Epoch: 13 [32000/60000 (53%)]     Loss: 0.137952

 

Test set: Average loss: 0.0654, Accuracy: 9802/10000 (98%)

 

Train Epoch: 14 [0/60000 (0%)]  Loss: 0.068635

Train Epoch: 14 [32000/60000 (53%)]     Loss: 0.084583

 

Test set: Average loss: 0.0515, Accuracy: 9853/10000 (99%)

 

Train Epoch: 15 [0/60000 (0%)]  Loss: 0.263158

Train Epoch: 15 [32000/60000 (53%)]     Loss: 0.127036

 

Test set: Average loss: 0.0493, Accuracy: 9851/10000 (99%)

 

Train Epoch: 16 [0/60000 (0%)]  Loss: 0.083642

Train Epoch: 16 [32000/60000 (53%)]     Loss: 0.028274

 

Test set: Average loss: 0.0461, Accuracy: 9867/10000 (99%)

 

Train Epoch: 17 [0/60000 (0%)]  Loss: 0.076734

Train Epoch: 17 [32000/60000 (53%)]     Loss: 0.034796

 

Test set: Average loss: 0.0409, Accuracy: 9864/10000 (99%)

 

Train Epoch: 18 [0/60000 (0%)]  Loss: 0.122501

Train Epoch: 18 [32000/60000 (53%)]     Loss: 0.152187

 

Test set: Average loss: 0.0474, Accuracy: 9860/10000 (99%)

 

Train Epoch: 19 [0/60000 (0%)]  Loss: 0.050512

Train Epoch: 19 [32000/60000 (53%)]     Loss: 0.270055

 

Test set: Average loss: 0.0416, Accuracy: 9878/10000 (99%)

 

Train Epoch: 20 [0/60000 (0%)]  Loss: 0.073357

Train Epoch: 20 [32000/60000 (53%)]     Loss: 0.017542

 

Test set: Average loss: 0.0713, Accuracy: 9816/10000 (98%)

脚本的总运行时间:1分48.736秒

人工智能芯片与自动驾驶
原文地址:https://www.cnblogs.com/wujianming-110117/p/14394280.html