如何在CPU上优化GEMM(下)

如何在CPU上优化GEMM(下)

Array Packing

另一个重要的技巧是数组打包。这个技巧是对数组的存储维度进行重新排序,将某个维度上的连续访问模式在平滑后转换为顺序模式。

 

如上图所示,在阻塞计算之后,可以观察到B的数组访问模式(扁平化后),它是规则的但不连续的。期望经过一些转换,可以得到连续访问模式。可以将[16][16]数组重新排序为[16/4][16][4]数组,这样当从压缩数组中获取相应的值时,B的访问模式将是顺序的。

# We have to re-write the algorithm slightly.

packedB = te.compute((N / bn, K, bn), lambda x, y, z: B[y, x * bn + z], name="packedB")

C = te.compute(

    (M, N),

    lambda x, y: te.sum(A[x, k] * packedB[y // bn, k, tvm.tir.indexmod(y, bn)], axis=k),

    name="C",

)

 

s = te.create_schedule(C.op)

 

xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

(k,) = s[C].op.reduce_axis

ko, ki = s[C].split(k, factor=4)

 

s[C].reorder(xo, yo, ko, xi, ki, yi)

s[C].vectorize(yi)

 

x, y, z = s[packedB].op.axis

s[packedB].vectorize(z)

s[packedB].parallel(x)

 

func = tvm.build(s, [A, B, C], target=target, name="mmult")

assert func

 

c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), ctx)

func(a, b, c)

tvm.testing.assert_allclose(c.asnumpy(), answer, rtol=1e-5)

 

evaluator = func.time_evaluator(func.entry_name, ctx, number=10)

print("Opt4: %f" % evaluator(a, b, c).mean)

Out:

Opt4: 0.105409

Here is the generated IR after array packing.

print(tvm.lower(s, [A, B, C], simple_mode=True))

Out:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()

  attr = {"global_symbol": "main", "tir.noalias": True}

  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),

             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], []),

             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], [])}

  buffer_map = {A_1: A, B_1: B, C_1: C} {

  attr [packedB: Pointer(float32)] "storage_scope" = "global";

  allocate(packedB, float32x32, [32768]) {

    for (x: int32, 0, 32) "parallel" {

      for (y: int32, 0, 1024) {

        packedB[ramp(((x*32768) + (y*32)), 1, 32)] = (float32x32*)B_2[ramp(((y*1024) + (x*32)), 1, 32)]

      }

    }

    for (x.outer: int32, 0, 32) {

      for (y.outer: int32, 0, 32) {

        for (x.inner.init: int32, 0, 32) {

          C_2[ramp((((x.outer*32768) + (x.inner.init*1024)) + (y.outer*32)), 1, 32)] = broadcast(0f32, 32)

        }

        for (k.outer: int32, 0, 256) {

          for (x.inner: int32, 0, 32) {

            for (k.inner: int32, 0, 4) {

              C_2[ramp((((x.outer*32768) + (x.inner*1024)) + (y.outer*32)), 1, 32)] = ((float32x32*)C_2[ramp((((x.outer*32768) + (x.inner*1024)) + (y.outer*32)), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.inner*1024)) + (k.outer*4)) + k.inner)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + (k.inner*32)), 1, 32)]))

            }

          }

        }

      }

    }

  }

}

Write cache for blocks

分块后,程序将结果逐块写入C,访问模式不是顺序的。因此,可以使用一个顺序缓存数组来保存块结果,并在所有块结果就绪时写入C。

s = te.create_schedule(C.op)

 

# Allocate write cache

CC = s.cache_write(C, "global")

 

xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

 

# Write cache is computed at yo

s[CC].compute_at(s[C], yo)

 

# New inner axes

xc, yc = s[CC].op.axis

 

(k,) = s[CC].op.reduce_axis

ko, ki = s[CC].split(k, factor=4)

s[CC].reorder(ko, xc, ki, yc)

s[CC].unroll(ki)

s[CC].vectorize(yc)

 

x, y, z = s[packedB].op.axis

s[packedB].vectorize(z)

s[packedB].parallel(x)

 

func = tvm.build(s, [A, B, C], target=target, name="mmult")

assert func

 

c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), ctx)

func(a, b, c)

tvm.testing.assert_allclose(c.asnumpy(), answer, rtol=1e-5)

 

evaluator = func.time_evaluator(func.entry_name, ctx, number=10)

print("Opt5: %f" % evaluator(a, b, c).mean)

Out:

Opt5: 0.098048

Here is the generated IR after blocking.

print(tvm.lower(s, [A, B, C], simple_mode=True))

Out:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()

  attr = {"global_symbol": "main", "tir.noalias": True}

  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),

             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], []),

             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], [])}

  buffer_map = {A_1: A, B_1: B, C_1: C} {

  attr [packedB: Pointer(float32)] "storage_scope" = "global";

  allocate(packedB, float32x32, [32768]);

  attr [C.global: Pointer(float32)] "storage_scope" = "global";

  allocate(C.global, float32, [1024]) {

    for (x: int32, 0, 32) "parallel" {

      for (y: int32, 0, 1024) {

        packedB[ramp(((x*32768) + (y*32)), 1, 32)] = (float32x32*)B_2[ramp(((y*1024) + (x*32)), 1, 32)]

      }

    }

    for (x.outer: int32, 0, 32) {

      for (y.outer: int32, 0, 32) {

        for (x.c.init: int32, 0, 32) {

          C.global[ramp((x.c.init*32), 1, 32)] = broadcast(0f32, 32)

        }

        for (k.outer: int32, 0, 256) {

          for (x.c: int32, 0, 32) {

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[(((x.outer*32768) + (x.c*1024)) + (k.outer*4))], 32)*(float32x32*)packedB[ramp(((y.outer*32768) + (k.outer*128)), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 1)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 32), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 2)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 64), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 3)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 96), 1, 32)]))

          }

        }

        for (x.inner: int32, 0, 32) {

          for (y.inner: int32, 0, 32) {

            C_2[((((x.outer*32768) + (x.inner*1024)) + (y.outer*32)) + y.inner)] = (float32*)C.global[((x.inner*32) + y.inner)]

          }

        }

      }

    }

  }

}

Parallel

此外,还可以利用多核处理器来实现线程级的并行化。

s = te.create_schedule(C.op)

 

CC = s.cache_write(C, "global")

 

xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)

 

s[CC].compute_at(s[C], yo)

 

xc, yc = s[CC].op.axis

 

(k,) = s[CC].op.reduce_axis

ko, ki = s[CC].split(k, factor=4)

s[CC].reorder(ko, xc, ki, yc)

s[CC].unroll(ki)

s[CC].vectorize(yc)

 

# parallel

s[C].parallel(xo)

 

x, y, z = s[packedB].op.axis

s[packedB].vectorize(z)

s[packedB].parallel(x)

 

func = tvm.build(s, [A, B, C], target=target, name="mmult")

assert func

 

c = tvm.nd.array(numpy.zeros((M, N), dtype=dtype), ctx)

func(a, b, c)

tvm.testing.assert_allclose(c.asnumpy(), answer, rtol=1e-5)

 

evaluator = func.time_evaluator(func.entry_name, ctx, number=50)

opt6_time = evaluator(a, b, c).mean

print("Opt6: %f" % opt6_time)

Out:

Opt6: 0.032347

Here is the generated IR after parallelization.

print(tvm.lower(s, [A, B, C], simple_mode=True))

Out:

primfn(A_1: handle, B_1: handle, C_1: handle) -> ()

  attr = {"global_symbol": "main", "tir.noalias": True}

  buffers = {C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),

             B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], []),

             A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], [])}

  buffer_map = {A_1: A, B_1: B, C_1: C} {

  attr [packedB: Pointer(float32)] "storage_scope" = "global";

  allocate(packedB, float32x32, [32768]) {

    for (x: int32, 0, 32) "parallel" {

      for (y: int32, 0, 1024) {

        packedB[ramp(((x*32768) + (y*32)), 1, 32)] = (float32x32*)B_2[ramp(((y*1024) + (x*32)), 1, 32)]

      }

    }

    for (x.outer: int32, 0, 32) "parallel" {

      attr [C.global: Pointer(float32)] "storage_scope" = "global";

      allocate(C.global, float32, [1024]);

      for (y.outer: int32, 0, 32) {

        for (x.c.init: int32, 0, 32) {

          C.global[ramp((x.c.init*32), 1, 32)] = broadcast(0f32, 32)

        }

        for (k.outer: int32, 0, 256) {

          for (x.c: int32, 0, 32) {

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[(((x.outer*32768) + (x.c*1024)) + (k.outer*4))], 32)*(float32x32*)packedB[ramp(((y.outer*32768) + (k.outer*128)), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 1)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 32), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 2)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 64), 1, 32)]))

            C.global[ramp((x.c*32), 1, 32)] = ((float32x32*)C.global[ramp((x.c*32), 1, 32)] + (broadcast((float32*)A_2[((((x.outer*32768) + (x.c*1024)) + (k.outer*4)) + 3)], 32)*(float32x32*)packedB[ramp((((y.outer*32768) + (k.outer*128)) + 96), 1, 32)]))

          }

        }

        for (x.inner: int32, 0, 32) {

          for (y.inner: int32, 0, 32) {

            C_2[((((x.outer*32768) + (x.inner*1024)) + (y.outer*32)) + y.inner)] = (float32*)C.global[((x.inner*32) + y.inner)]

          }

        }

      }

    }

  }

}

Summary

在用18行代码应用上述简单的优化之后,生成的代码可以达到MKL的60%的numpy性能。请注意,网页上的输出反映了非独占Docker容器上的运行时间,因此是不可靠的。强烈建议自己来完成,以观察TVM所获得的性能提升。

https://tvm.apache.org/docs/tutorials/optimize/opt_gemm.html#sphx-glr-tutorials-optimize-opt-gemm-py

原文地址:https://www.cnblogs.com/wujianming-110117/p/14109537.html