【题解】有标号的DAG计数2

[HZOI 2015] 有标号的DAG计数 II

(I)中DP只有一个数组,

[dp_i=sum{ichoose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} ]

不会...

傻啊直接多项式球逆,借鉴一些luogu那道模板分治FFT

这里主要有个很烦人的(ji-j^2),现在要构造成(j,i-j,i)的的形式就好了,神tst告诉我们

[ij = inom{i}{2} + inom{j+1}{2} - inom{i-j}{2}=dfrac {i(i-1)+j(j+1)-(i-j)(i-j-1)}{2} ]

带进去,化简

[frac{f_i}{i!2^inom{i}{2}} = sumlimits_{j=1}^i dfrac{(-1)^{j+1}}{j!2^inom{j}{2}} dfrac{f_{i-j}}{(i-j)!2^inom{i-j}{2}} ]

(F(x)=sum dfrac{f_i}{i!2^inom{i}{2}} x^i)(H(x)=sum dfrac{(-1)^{j+1}}{j!2^inom{j}{2}}x^j) 上式等价于

[F(x)=G(x)(F(x)-1) ]

直接球逆得到 (G(x))

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
 
 
using namespace std;  typedef long long ll;
inline int qr(){
      register int ret=0,f=0;
      register char c=getchar();
      while(c<48||c>57)f|=c==45,c=getchar();
      while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
      return f?-ret:ret;
}
 
namespace poly{
      const int maxn=1<<18|1;
      int r[maxn];
      int savcnt;
      inline void getr(const int&len){
	    if(len==savcnt)return;
	    savcnt=len;
	    int cnt=0;
	    for(register int t=1;t<len;t<<=1) ++cnt;
	    for(register int t=1;t<len;++t)
		  r[t]=r[t>>1]>>1|(t&1)<<cnt>>1;
      }
      const int mod=998244353;
      const int g=3;
      inline int ksm(const int&base,const ll&p){
	    register int ret=1;
	    for(register ll t=p,b=base%mod;t;t>>=1,b=1ll*b*b%mod)
		  if(t&1) ret=1ll*ret*b%mod;
	    return ret;
      }
      const int gi=ksm(3,mod-2);
      inline void NTT(int*a,const int&len,const int&tag){
	    getr(len);
	    for(register int t=0;t<len;++t)
		  if(r[t]>t) swap(a[t],a[r[t]]);
	    int*a1,*a0,s=g;
	    if(tag!=1) s=gi;
	    for(register int t=1,wn;t<len;t<<=1){
		  wn=ksm(s,(mod-1)/(t<<1));
		  for(register int i=0;i<len;i+=t<<1){
			a1=(a0=a+i)+t;
			for(register int k=0,w=1,m;k<t;++k,++a1,++a0,w=1ll*w*wn%mod){
			      m=1ll*w**a1%mod;
			      *a1=(*a0+mod-m)%mod;
			      *a0=(*a0    +m)%mod;
			      
			}
		  }
	    }
	    if(tag!=1)
		  for(register int t=0,w=ksm(len,mod-2);t<len;++t)
			a[t]=1ll*a[t]*w%mod;
      }
      
      void INV(int*a,int*b,const int&len){
	    if(len==1){b[0]=ksm(a[0],mod-2);return;}
	    INV(a,b,len>>1);
	    static int A[maxn],B[maxn];
	    for(register int t=0;t<len<<1;++t) A[t]=B[t]=0;
	    for(register int t=0;t<len;++t) A[t]=a[t],B[t]=b[t];
	    NTT(A,len<<1,1);NTT(B,len<<1,1);
	    for(register int t=0;t<len<<1;++t) B[t]=1ll*A[t]*B[t]%mod*B[t]%mod;
	    NTT(B,len<<1,-1);
	    for(register int t=0;t<len;++t) b[t]=((b[t]+b[t])%mod+mod-B[t])%mod;
	    
      }
      
            
}
 
int g[1<<19|1],f[1<<19|1];
int jc[100005];
int inv[100005];
int n;
const int mod=998244353;
int main(){
      freopen("dag_count.in","r",stdin);
      freopen("dag_count.out","w",stdout);
      n=qr();
      jc[0]=1;
      inv[0]=1;
      for(register int t=1;t<=n;++t)
	    jc[t]=1ll*jc[t-1]*t%mod;
      using poly::ksm;
      inv[n]=ksm(jc[n],mod-2);
      for(register int t=n-1;t;--t) inv[t]=1ll*(t+1)*inv[t+1]%mod;
      for(register int t=1;t<=n;++t){
	    g[t]=1ll*ksm(ksm(2,1ll*t*(t-1)/2),mod-2)*inv[t]%mod;
	    if(t&1) g[t]=mod-g[t];
      }       
      g[0]=1;
      int k=1;
      while(k<=n)k<<=1;
      poly::INV(g,f,k);
      printf("%lld
",1ll*jc[n]*ksm(2,1ll*n*(n-1)/2)%mod*f[n]%mod);
      return 0;
}
原文地址:https://www.cnblogs.com/winlere/p/11258188.html