并发编程 --- 线程补充

线程

GIL全局解释器锁

1.GIL是Cpython特有的。
2.GIL本质上是一个互斥锁.
3.GIL的为了阻止同一个进程内多个线程同时执行(并行)

  • 单个进程下的多个线程无法实现并行,但能实现并发
    锁主要是因为CPython的内存管理不是 "线程安全" 的.
    • 保证线程在执行任务时不会被垃圾回收机制回收。

2.GIL存在的目的:
GIL的存在就是为了保证线程安全的.

注意: 多个线程过来执行,一旦遇到IO操作,就会立马释放GIL解释器锁,交给下一个先进来的线程.

import time
from threading import Thread, current_thread

number = 100


def task():
    global number
    number2 = number
    # time.sleep(1)
    number = number2 - 1
    print(number, current_thread().name)


for line in range(100):
    t = Thread(target=task)
    t.start()

多线程的作用

何时使用多进程或多线程?

  • 在计算密集型的情况下:
    • 使用多进程
- 在IO密集型的情况下:
    - 使用多线程

- 高效执行多个进程,内多个IO密集型的程序:
    - 使用 多进程 + 多线程
多线程的作用:
    站在两个角度去看问题:

    - 四个任务, 计算密集型, 每个任务需要10s:
        单核:
            - 开启进程
                消耗资源过大
                - 4个进程: 40s

            - 开启线程
                消耗资源远小于进程
                - 4个线程: 40s

        多核:
            - 开启进程
                并行执行,效率比较高
                - 4个进程: 10s

            - 开启线程
                并发执行,执行效率低.
                - 4个线程: 40s



    - 四个任务, IO密集型, 每个任务需要10s:
        单核:
            - 开启进程
                消耗资源过大
                - 4个进程: 40s

            - 开启线程
                消耗资源远小于进程
                - 4个线程: 40s

        多核:
            - 开启进程
                并行执行,效率小于多线程,因为遇到IO会立马切换CPU的执行权限
                - 4个进程: 40s  +  开启进程消耗的额外时间

            - 开启线程
                并发执行,执行效率高于多进程

                - 4个线程: 40s
from threading import Thread
from multiprocessing import Process
import os
import time


# 计算密集型
def work1():
    number = 0
    for line in range(100000000):
        number += 1


# IO密集型
def work2():
    time.sleep(1)


if __name__ == '__main__':

    # 测试计算密集型
    print(os.cpu_count())  # 6
    # 开始时间
    start_time = time.time()
    list1 = []
    for line in range(6):
        p = Process(target=work1)  # 程序执行时间5.300818920135498
        # p = Thread(target=work1)  # 程序执行时间24.000795602798462

        list1.append(p)
        p.start()

    # IO密集型
    print(os.cpu_count())  # 6
    # 开始时间
    start_time = time.time()
    list1 = []
    for line in range(40):
        # p = Process(target=work2)  # 程序执行时间4.445072174072266
        p = Thread(target=work2)  # 程序执行时间1.009237289428711

        list1.append(p)
        p.start()

    for p in list1:
        p.join()
    end_time = time.time()

    print(f'程序执行时间{end_time - start_time}')

死锁现象

注意:锁不能乱用,乱用会产生死锁现象,这个时候进程会直接卡住

from threading import Lock, Thread, current_thread
import time

mutex_a = Lock()
mutex_b = Lock()

class MyThread(Thread):

    # 线程执行任务
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutex_a.acquire()
        # print(f'用户{current_thread().name}抢到锁a')
        print(f'用户{self.name}抢到锁a')
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')

    def func2(self):
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        # IO操作
        time.sleep(1)

        mutex_a.acquire()
        print(f'用户{self.name}抢到锁a')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')


for line in range(10):
    t = MyThread()
    t.start()

递归锁

递归锁(了解): 用于解决死锁问题.

RLock: 比喻成万能钥匙,可以提供给多个人去使用. 但是第一个使用的时候,会对该锁做一个引用计数. 只有引用计数为0, 才能真正释放让另一个人去使用

from threading import RLock, Thread, Lock
import time

mutex_a = mutex_b = Lock()


class MyThread(Thread):

    # 线程执行任务
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutex_a.acquire()
        # print(f'用户{current_thread().name}抢到锁a')
        print(f'用户{self.name}抢到锁a')
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')

    def func2(self):
        mutex_b.acquire()
        print(f'用户{self.name}抢到锁b')
        # IO操作
        time.sleep(1)
        mutex_a.acquire()
        print(f'用户{self.name}抢到锁a')
        mutex_a.release()
        print(f'用户{self.name}释放锁a')
        mutex_b.release()
        print(f'用户{self.name}释放锁b')


for line in range(10):
    t = MyThread()
    t.start()

信号量

信号量(了解):

互斥锁: 比喻成一个家用马桶.

同一时间只能让一个人去使用

信号量: 比喻成公厕多个马桶. 同一时间可以让多个人去使用

from threading import Semaphore, Lock
from threading import current_thread
from threading import Thread
import time

sm = Semaphore(5)  # 5个马桶
mutex = Lock()  # 5个马桶


def task():
    # mutex.acquire()
    sm.acquire()
    print(f'{current_thread().name}执行任务')
    time.sleep(1)
    sm.release()
    # mutex.release()


for line in range(20):
    t = Thread(target=task)
    t.start()

线程队列

1.首先根据第一个参数判断ascii表的数值大小

2.判断第个参数中的汉字顺序.

3.再判断第二参数中数字--> 字符串数字 ---> 中文

4.以此类推

import queue

# 普通的线程队列: 先进先出
q = queue.Queue()
q.put(1)
q.put(2)
q.put(3)
print(q.get())  # 1

# 优先级队列
q = queue.PriorityQueue()  # 超级了解
# 若参数中传的是元组,会以元组中第一个数字参数为准
q.put(('a优', '先', '娃娃头', 4))  # a==97
q.put(('a先', '优', '娃娃头', 3))  # a==98
q.put(('a级', '级', '娃娃头', 2))  # a==99
原文地址:https://www.cnblogs.com/whkzm/p/11729327.html