linux不使用任务门【转载】

http://oss.org.cn/kernel-book/ch05/5.4.1.htm

Intel的这种设计确实很周到,也为任务切换提供了一个非常简洁的机制。但是,由于i386的系统结构基本上是CISC的,通过JMP指令或CALL(或中断)完成任务的过程实际上是“复杂指令”的执行过程,其执行过程长达300多个CPU周期(一个POP指令占12个CPU周期),因此,Linux内核并不完全使用i386CPU提供的任务切换机制。

由于i386CPU要求软件设置TR及TSS,Linux内核只不过“走过场”地设置TR及TSS,以满足CPU的要求。但是,内核并不使用任务门,也不使用JMP或CALL指令实施任务切换。内核只是在初始化阶段设置TR,使之指向一个TSS,从此以后再不改变TR的内容了。也就是说,每个CPU(如果有多个CPU)在初始化以后的全部运行过程中永远使用那个初始的TSS。同时,内核也不完全依靠TSS保存每个进程切换时的寄存器副本,而是将这些寄存器副本保存在各个进程自己的内核栈中(参见上一章task_struct结构的存放)。

这样以来,TSS中的绝大部分内容就失去了原来的意义。那么,当进行任务切换时,怎样自动更换堆栈?我们知道,新任务的内核栈指针(SS0和ESP0)应当取自当前任务的TSS,可是,Linux中并不是每个任务就有一个TSS,而是每个CPU只有一个TSS。Intel原来的意图是让TR的内容(即TSS)随着任务的切换而走马灯似地换,而在Linux内核中却成了只更换TSS中的SS0和ESP0,而不更换TSS本身,也就是根本不更换TR的内容。这是因为,改变TSS中SS0和ESP0所化的开销比通过装入TR以更换一个TSS要小得多。因此,在Linux内核中,TSS并不是属于某个进程的资源,而是全局性的公共资源。在多处理机的情况下,尽管内核中确实有多个TSS,但是每个CPU仍旧只有一个TSS。


原文地址:https://www.cnblogs.com/weiweishuo/p/3082611.html