[洛谷P3807] 【模板】卢卡斯定理

({n+m choose n}mod p)

卢卡斯(Lucas)定理

[{n choose m}equiv{nmod p choose mmod p} imes{lfloor{nover p} floor choose lfloor{mover p} floor}pmod p ]

证明(感谢Lance1ot)

首先我们需要证明

[{pchoose i}equiv{pover i}{p-1choose i-1}equiv 0pmod p,(1le ile p-1) ]

[{pchoose i}={p!over i!(p-i)!}={pover i} {(p-1)!over(i-1)!(p-1-i+1)!} {pover i} {(p-1)!over(i-1)!(p-i)!}={pover i}{p-1choose i-1} ]

得证。
然后根据这种性质和二项式定理,我们马上得出

[(1+x)^pequiv {pchoose0}1^p+{pchoose1}x^{2}+....+{pchoose p}x^pequiv {pchoose0}1^px^0+{pchoose p}1^0x^pequiv 1+x^ppmod p ]

然后我们接下来要求证

[{achoose b}equiv {a_0choose b_0}{a_1pchoose b_1p}{a_2p^2choose b_2p^2}dotspmod p ]

(a=lp+r,b=sp+j)
求证({achoose b}equiv {lchoose s}{rchoose j}pmod p)然后利用性质递归求解就可以了。
继续从二次项定理出发

[(1+x)^a=(1+x)^{lp} cdot (1+x)^r ]

然后展开((1+x)^{lp})

[(1+x)^{lp} equiv ((1+x)^p)^l equiv (1+x^p)^lpmod p ]

[ herefore (1+x)^a equiv (1+x^p)^l(1+x)^rpmod p ]

观察项(x^b)的系数

[ecause {a^bchoose x^b}equiv{lchoose s}x^{sp}{rchoose j}x^jpmod p ]

[ herefore {achoose b}x^b equiv {lchoose s}{rchoose j}x^bpmod p ]

[ herefore {achoose b}equiv {lchoose s}{rchoose j} equiv {lfloor {aover p} floorchoose lfloor {bover p} floor}{amod pchoose bmod p}pmod p ]

得证

实现

#include <cstdio>

#define ll long long
#define re register
#define il inline
#define gc getchar
#define pc putchar

template <class T>
void read(T &x) {
  re bool f = 0;
  re char c = gc();
  while ((c < '0' || c > '9') && c != '-') c = gc();
  if (c == '-') f = 1, c = gc();
  x = 0;
  while (c >= '0' && c <= '9') x = x * 10 + (c ^ 48), c = gc();
  f && (x = -x);
}

template <class T>
void print(T x) {
  if (x < 0) pc('-'), x = -x;
  if (x >= 10) print(x / 10);
  pc((x % 10) ^ 48);
}

template <class T>
void prisp(T x) {
  print(x);
  pc(' ');
}
template <class T>
void priln(T x) {
  print(x);
  pc('
');
}

ll fac[100005];

ll pow(ll b, int t, ll p) {
  ll r;
  for (r = 1; t; t >>= 1, b = (b * b) % p)
    if (t & 1) r = (r * b) % p;
  return r;
}

ll C(ll n, ll m, ll p) {
  if (m > n) return 0;
  return (fac[n] * pow(fac[m], p - 2, p) % p) * pow(fac[n - m], p - 2, p) % p;
}

ll lucas(ll n, ll m, ll p) {
  if (m == 0) return 1;
  return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
}

int main() {
  int t;
  read(t);
  while (t--) {
    ll n, m, p;
    read(n);
    read(m);
    read(p);
    fac[0] = 1;
    for (int i = 1; i <= p; ++i) fac[i] = (fac[i - 1] * i) % p;
    priln(lucas(n + m, m, p));
  }
}
原文地址:https://www.cnblogs.com/water-lift/p/12561427.html