【BZOJ】3732: Network【Kruskal重构树】

3732: Network

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2812  Solved: 1363
[Submit][Status][Discuss]

Description

给你N个点的无向图 (1 <= N <= 15,000),记为:1…N。 
图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 < = d_j < = 1,000,000,000).

现在有 K个询问 (1 < = K < = 20,000)。 
每个询问的格式是:A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Input

第一行: N, M, K。 
第2..M+1行: 三个正整数:X, Y, and D (1 <= X <=N; 1 <= Y <= N). 表示X与Y之间有一条长度为D的边。 
第M+2..M+K+1行: 每行两个整数A B,表示询问从A点走到B点的所有路径中,最长的边最小值是多少?

Output

 对每个询问,输出最长的边最小值是多少。

Sample Input

6 6 8
1 2 5
2 3 4
3 4 3
1 4 8
2 5 7
4 6 2
1 2
1 3
1 4
2 3
2 4
5 1
6 2
6 1

Sample Output

5
5
5
4
4
7
4
5

HINT

1 <= N <= 15,000 

1 <= M <= 30,000 

1 <= d_j <= 1,000,000,000 

1 <= K <= 15,000


Solution

看到题想到的是前几年noip考的货车运输,就是建出最大生成树再链剖+线段树求链上最小边即可,学习了一波$Kruskal$重构树后,整道题就直接变成最大生成树+求LCA了!

这道题是模板了,大佬%%%写的相当清楚了,在最小生成树连接两个块时,新建一个点,作为两个块最远祖先(并查集中)的父亲节点,把这条边的权值下放到新建节点的点权,因为这条边就是连接两个块的最长边权的最小值,所以每次询问返回两个点的LCA的点权值即可。

再也不用复杂的线段树或者倍增啦!!!

Code

#include<bits/stdc++.h>
using namespace std;

int n, m, k;

struct Node {
    int u, v, nex, w;
} Edge1[30035], Edge[30036];
bool cmp(Node a, Node b) { return a.w < b.w; }

int stot1;
void add1(int u, int v, int w) {
    Edge1[++stot1] = (Node) {u, v, 0, w};
}

int stot, h[30035];
void add(int u, int v) {
    Edge[++stot] = (Node) {u, v, h[u], 0};
    h[u] = stot;
}

int u_fa[30035];
int find(int u) {
    if(u != u_fa[u])    u_fa[u] = find(u_fa[u]);
    return u_fa[u];
}

int t, val[30035];
void Kruskal() {
    for(int i = 1; i <= n * 2; i ++)    u_fa[i] = i;
    t = n;
    for(int i = 1; i <= m; i ++) {
        int u = Edge1[i].u, v = Edge1[i].v, w = Edge1[i].w;
        int uu = find(u), vv = find(v);
        if(uu != vv) {
            u_fa[uu] = ++ t; u_fa[vv] = t;
            add(t, uu);    add(t, vv); val[t] = w;
        }
    }
}

int siz[30035], fa[30035], son[30035], dep[30035];
void dfs1(int u, int ff) {
    fa[u] = ff;    siz[u] = 1;     dep[u] = dep[ff] + 1;
    for(int i = h[u]; i; i = Edge[i].nex) {
        int v = Edge[i].v;
        if(v == ff)    continue;
        dfs1(v, u);
        siz[u] += siz[v];
        if(siz[v] > siz[son[u]])    son[u] = v;
    }
}

int top[30035];
void dfs2(int u, int tp) {
    top[u] = tp;
    if(son[u])    dfs2(son[u], tp);
    for(int i = h[u]; i; i = Edge[i].nex) {
        int v = Edge[i].v;
        if(v == son[u] || v == fa[u])    continue;
        dfs2(v, v);
    }
}

int LCA(int u, int v) {
    if(find(u) != find(v))    return 0;
    while(top[u] != top[v]) {
        if(dep[top[u]] < dep[top[v]])    swap(u, v);
        u = fa[top[u]];
    }
    if(dep[u] < dep[v])    swap(u, v);
    return val[v];
}

int main() {
    scanf("%d%d%d", &n, &m, &k);
    for(int i = 1; i <= m; i ++) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        add1(u, v, w);
    }
    sort(Edge1 + 1, Edge1 + 1 + m, cmp);
    Kruskal();
    for(int i = 1; i <= t; i ++)
        if(!dep[i]) {
            dfs1(u_fa[i], 0);    dfs2(u_fa[i], u_fa[i]);
        }
    for(int i = 1; i <= k; i ++) {
        int u, v;
        scanf("%d%d", &u, &v);
        printf("%d
", LCA(u, v));
    }
    return 0;
}

 

 

原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9872649.html