CS231n 2016 通关 第五、六章 Batch Normalization 作业

BN层在实际中应用广泛。

上一次总结了使得训练变得简单的方法,比如SGD+momentum RMSProp Adam,BN是另外的方法。

cell 1 依旧是初始化设置

cell 2 读取cifar-10数据

cell 3 BN的前传

 1 # Check the training-time forward pass by checking means and variances
 2 # of features both before and after batch normalization
 3 
 4 # Simulate the forward pass for a two-layer network
 5 N, D1, D2, D3 = 200, 50, 60, 3
 6 X = np.random.randn(N, D1)
 7 W1 = np.random.randn(D1, D2)
 8 W2 = np.random.randn(D2, D3)
 9 a = np.maximum(0, X.dot(W1)).dot(W2)
10 
11 print 'Before batch normalization:'
12 print '  means: ', a.mean(axis=0)
13 print '  stds: ', a.std(axis=0)
14 
15 # Means should be close to zero and stds close to one
16 print 'After batch normalization (gamma=1, beta=0)'
17 a_norm, _ = batchnorm_forward(a, np.ones(D3), np.zeros(D3), {'mode': 'train'})
18 print '  mean: ', a_norm.mean(axis=0)
19 print '  std: ', a_norm.std(axis=0)
20 
21 # Now means should be close to beta and stds close to gamma
22 gamma = np.asarray([1.0, 2.0, 3.0])
23 beta = np.asarray([11.0, 12.0, 13.0])
24 a_norm, _ = batchnorm_forward(a, gamma, beta, {'mode': 'train'})
25 print 'After batch normalization (nontrivial gamma, beta)'
26 print '  means: ', a_norm.mean(axis=0)
27 print '  stds: ', a_norm.std(axis=0)

  相应的核心代码:

 1     buf_mean = np.mean(x, axis=0)
 2     buf_var = np.var(x, axis=0)
 3     x_hat = x - buf_mean
 4     x_hat = x_hat / (np.sqrt(buf_var + eps))
 5 
 6     out = gamma * x_hat + beta
 7     #running_mean = momentum * running_mean + (1 - momentum) * sample_mean
 8     #running_var = momentum * running_var + (1 - momentum) * sample_var
 9     running_mean = momentum * running_mean + (1- momentum) * buf_mean
10     running_var = momentum * running_var + (1 - momentum) * buf_var   

  running_mean  running_var 是在test时使用的,test时不再另外计算均值和方差。

  test 时的前传核心代码:

1 x_hat = x - running_mean
2 x_hat = x_hat / (np.sqrt(running_var + eps))
3 out = gamma * x_hat + beta

cell 5 BN反向传播

  通过反向传播,计算beta gamma等参数。

  核心代码:

 1   dx_hat = dout * cache['gamma'] 
 2   dgamma = np.sum(dout * cache['x_hat'], axis=0)
 3   dbeta = np.sum(dout, axis=0)
 4   #x_hat = x - buf_mean
 5   #x_hat = x_hat / (np.sqrt(buf_var + eps))
 6   t1 = cache['x'] - cache['mean']
 7   t2 = (-0.5)*((cache['var'] + cache['eps'])**(-1.5))
 8   t1 = t1 * t2
 9   d_var = np.sum(dx_hat * t1, axis=0)
10 
11   tmean1 = (-1)*((cache['var'] + cache['eps'])**(-0.5))
12   d_mean = np.sum(dx_hat * tmean1, axis=0)
13 
14   tmean1 = (-1)*tmean1
15   tx1 =   dx_hat * tmean1
16   tx2 = d_mean * (1.0 / float(N))
17   tx3 = d_var * (2 * (cache['x'] - cache['mean']) / N)
18   dx = tx1 + tx2 + tx3

cell 9 BN与其他层结合

  形成的结构:   {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax

  原理依旧。

之后是对cell 9 的模型,对cifar-10数据训练。

值得注意的是:

  使用BN后,正则项与dropout层的需求降低。可以使用较高的学习率加快模型收敛。

附:通关CS231n企鹅群:578975100 validation:DL-CS231n 

原文地址:https://www.cnblogs.com/wangxiu/p/5689807.html