2018年宝鸡市三检理科数学题目解答

一、选择题:

第2题(判断函数的奇偶性或对称性)

函数(f(x)=cfrac{4^x+1}{2^x})的图像【】

A、关于原点对称(;;;;;) B、关于(x)轴对称(;;;;;) C、关于(y)轴对称(;;;;;) D、关于直线(y=x)轴对称(;;;;;)

分析:注意到(f(x)=cfrac{4^x+1}{2^x}=cfrac{(2^x)^2+1}{2^x}=2^x+cfrac{1}{2^x}=2^x+2^{-x})

(f(-x)=2^{-x}+2^{-(-x)}=2^x+2^{-x}=f(x)),故函数(f(x))为偶函数,故选B。

解后反思:

1、积累常见函数的奇偶性很重要,比如(f(x)=e^x+e^{-x})为偶函数,(f(x)=e^{|x|})为偶函数,(f(x)=e^x-e^{-x})为奇函数,等等。

2、函数的奇偶性

第5题(限定条件下的均值不等式使用)

若正数(x,y)满足(x+3y=5xy),则(3x+4y)的最小值是【】

A、(cfrac{24}{5};;;;;) B、(cfrac{28}{5};;;;;) C、(5;;;;;) D、(6;;;;;)

分析:给已知式子(x+3y=5xy),两边同除以 (xy)得到,(cfrac{3}{x}+cfrac{1}{y}=5)

则问题转化为已知(cfrac{3}{x}+cfrac{1}{y}=5),求(3x+4y)的最小值

(3x+4y=cfrac{1}{5}(3x+4y)(cfrac{3}{x}+cfrac{1}{y}))

(=cfrac{1}{5}(9+4+cfrac{12y}{x}+cfrac{3x}{y})ge cfrac{1}{5}(13+2sqrt{36})=5)

当且仅当(cfrac{12y}{x}=cfrac{3x}{y})(x+3y=5xy)时,即(x=1, y=cfrac{1}{2})时取得等号。

故选C。

解后反思:

1、务必注意限定条件的给出方式,比如题目若给定(cfrac{3}{x}+cfrac{1}{y}=5)就比给定(cfrac{x}{y}+3=5x)要简单的多。

2、学习方法的改造和提升

第11题(已知零点的个数,求参数的取值范围)

若函数(f(x)=m-x^2+2lnx)在区间([cfrac{1}{e^2},e])上有两个不同的零点,则实数(m)的取值范围是【】

$A.(1,e^2-2]$ $B.[4+cfrac{1}{e^4},e^2-2]$ $C.(1,4+cfrac{1}{e^4}]$ $D.[1,+infty)$

法1:先数后形,分离参数,得到(m=x^2-2lnx)

(h(x)=x^2-2lnx(xin [cfrac{1}{e^2},e])),用导数研究函数的单调性,以画出大致图像。

(h'(x)=2x-cfrac{2}{x}=cfrac{2x^2-2}{x}=cfrac{2(x-1)(x+1)}{x})

故在((cfrac{1}{e^2},1))上,(h'(x)<0)(h(x))单调递减,

((1,e))上,(h'(x)>0)(h(x))单调递增,

(h(x)_{min}=h(1)=1)

端点值(h(cfrac{1}{e^2})=4+cfrac{1}{e^4})(h(e)=e^2-2),且(h(e)>h(cfrac{1}{e^4}))

在同一个坐标系中作出函数(y=m)和函数(y=h(x))的图像,

要使两个函数的图像有两个交点,

由图像可知,(1< m leqslant 4+cfrac{1}{e^2})。故选(C).

法2:利用参数的几何意义,直接从形上考虑?待编辑

参考图像

二、填空题:

三、解答题:

第17题(求数列的通项公式和等差数列的判断)
设${a_n}$是首项为$a_1$,公比为$q$的等比数列,$S_n$为数列${a_n}$的前$n$项和。

(1)已知(a_2=2),且(a_3)(S_1,S_3)的等差中项,求数列({a_n})的通项公式;

(2)当(a_1=1)(q=2)时,令(b_n=log_4(S_n+1)),求证:数列({b_n})是等差数列。

第19题(概率,贝努里概型)
某商场举行有奖促销活动,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有一个红球,则获得二等奖;若没有红球,则没有获奖,

(1)求顾客抽奖一次能获奖的概率。

【法1】(相互独立事件+互斥事件):记“抽奖一次能获一等奖”为事件(A),“抽奖一次能获二等奖”为事件(B)

“顾客抽奖一次能获奖”为事件(C),则事件(A、B)是互斥事件,且(C=A+B),两次抽奖是相互独立事件,

(P(A)=cfrac{C_4^1}{C_{10}^1}cdot cfrac{C_5^1}{C_{10}^1}=cfrac{20}{100})

(P(B)=cfrac{C_4^1}{C_{10}^1}cdot cfrac{C_5^1}{C_{10}^1}+cfrac{C_6^1}{C_{10}^1}cdot cfrac{C_5^1}{C_{10}^1}=cfrac{50}{100})

(P(C)=P(A+B)=cfrac{70}{100}=cfrac{7}{10})

【法2】(对立事件+相互独立事件):设“没有获奖”为事件(D)

(P(C)=1-P(D)=1-cfrac{C_6^1}{C_{10}^1}cdot cfrac{C_5^1}{C_{10}^1}=cfrac{7}{10})

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获得一等奖的次数为(X),求(X)的分布列、数学期望和方差。

由于顾客在每次抽奖过程中,中一等奖的概率都为(cfrac{C_4^1}{C_{10}^1}cdot cfrac{C_5^1}{C_{10}^1}=cfrac{1}{5})

那么此人抽奖3次,相当于做了3次独立重复实验,故(Xsim B(3,cfrac{1}{5}))(X=0,1,2,3)

(P(X=k)=C_3^kcdot (cfrac{1}{5})^k(1-cfrac{1}{5})^{3-k})(k=0,1,2,3)

(P(X=0)=C_3^0cdot (cfrac{1}{5})^0(1-cfrac{1}{5})^{3-0}=cfrac{64}{125})

(P(X=1)=C_3^1cdot (cfrac{1}{5})^1(1-cfrac{1}{5})^{3-1}=cfrac{48}{125})

(P(X=2)=C_3^2cdot (cfrac{1}{5})^2(1-cfrac{1}{5})^{3-2}=cfrac{12}{125})

(P(X=3)=C_3^3cdot (cfrac{1}{5})^3(1-cfrac{1}{5})^{3-3}=cfrac{1}{125})

分布列略,数学期望为(EX=3 imes cfrac{1}{5}=cfrac{3}{5})

方差为(DX=3 imes cfrac{1}{5} imes (1-cfrac{1}{5})=cfrac{12}{25})

解后反思:

1、求复杂事件的概率,需要将复杂事件分化为几个简单的事件,且必须弄清楚个事件之间的关系,这会决定后续的计算是用加法还是乘法。

2、(n)次独立重复实验中,离散型随机变量(Xsim B(n,p)),则(EX=np)(DX=np(1-p))

第21题【已知函数无零点,求参数的取值范围或最值】已知函数$f(x)=(2-a)x-2(1+lnx)+a$,$g(x)=cfrac{ex}{e^x}$,

(1)若函数(f(x))在区间((0,cfrac{1}{2}))上无零点,求实数(a)的最小值。

【法1】(分离参数,参数形式简单,函数复杂)

碰到这类问题,我们的第一反应往往是分离参数,然后数形结合求解,但是这个方法不见得是很恰当和很灵活的。

先变形为(a(1-x)=2+2lnx-2x),再分离参数为(a=cfrac{2+2lnx-2x}{1-x}),其中(xin (0,cfrac{1}{2}))

令函数(h(x)=cfrac{2+2lnx-2x}{1-x}),接下来用导数研究单调性,准备做函数的大值图像,

(h'(x)=cfrac{(cfrac{2}{x}-2)(1-x)-(2+2lnx-2x)(-1)}{(1-x)^2}=cfrac{2lnx+cfrac{2}{x}-2}{(1-x)^2})

暂时没法看透(h'(x))的正负值,也无法判断原函数(h(x))的增减性,

故再设(h'(x))的分子函数为(m(x)=2lnx+cfrac{2}{x}-2)

(m'(x)=cfrac{2}{x}-cfrac{2}{x^2}=cfrac{2x-2}{x^2})

由于(0< x <cfrac{1}{2}),故(m'(x) <0),即(m(x))单调递减,

故函数(m(x))的最小值的极限为(m(cfrac{1}{2})=2lncfrac{1}{2}+4-2=2(1-ln2)>0)

编外话:由分子函数(m(x))的最小值的极限为正,说明函数(h'(x))的分子都为正,

(h'(x)=cfrac{m(x)}{(1-x)^2}>0),故函数(h(x))(xin (0,cfrac{1}{2}))上单调递增,

(h(x))的最大值的极限为(h(cfrac{1}{2})=cfrac{2+2lncfrac{1}{2}-2 imescfrac{1}{2}}{1-cfrac{1}{2}}=2(1-2ln2))

要使直线(y=a)与函数(y=h(x)(0< x <cfrac{1}{2}))没有交点,

(a)的取值范围是(age 2(1-2ln2)),故(a_{min}=2-4ln2)

【法2】(分离参数,参数形式复杂,函数简单)

将原方程((2-a)x-2(1+lnx)+a=0),变形为(cfrac{2-a}{2}=cfrac{lnx}{x-1})

(h(x)=cfrac{lnx}{x-1})

(h'(x)=cfrac{cfrac{1}{x}(x-1)-lnx}{(x-1)^2}=cfrac{1-cfrac{1}{x}-lnx}{(x-1)^2})

(m(x)=1-cfrac{1}{x}-lnx)

(m'(x)=cfrac{1}{x^2}-cfrac{1}{x}=cfrac{1-x}{x^2}>0)((0,cfrac{1}{2}))上恒成立,

故函数(m(x))((0,cfrac{1}{2}))单调递增,

(m(x)_{max})的极限为(m(cfrac{1}{2})=1-2-lncfrac{1}{2}=ln2-1<0)

则函数(h'(x)=cfrac{m(x)}{(x-1)^2}<0)((0,cfrac{1}{2}))上恒成立,

函数(h(x))((0,cfrac{1}{2}))上单调递减,

(h(x)_{min})的极限为(h(cfrac{1}{2})=cfrac{lncfrac{1}{2}}{cfrac{1}{2}-1}=2ln2)

要使得原方程无解,必须满足函数(y=cfrac{2-a}{2})与函数(y=h(x))没有交点,

(cfrac{2-a}{2}leq 2ln2),即(age 2-4ln2)

(a_{min}=2-4ln2)

【法3】要是不用分离参数的方法,我们还可以这么分析呢?我们这样想,分离参数法是从数的角度来求解的,那么我们可以换个思路,想想能不能从形上入手分析?这时候,最好将原方程(f(x)=0)变形得到两个函数(h(x)=m(x)),其中这两个函数最好是基本初等函数,这样它们的图像我们不用费事就能做出来,同时让参数配备个几何意义那是最好的选择,比如斜率等等,故求解如下:

由于函数(f(x)=0)(xin (0,cfrac{1}{2}))上没有零点,

((2-a)x-2(1+lnx)+a=0)(xin (0,cfrac{1}{2}))上没有零点,

变形为((2-a)(x-1)=2lnx(0< x <cfrac{1}{2}))

这样左端为函数(h(x)=(2-a)(x-1)),是过定点((1,0))斜率是(2-a)的直线段,

右端为函数(m(x)=2lnx),是过定点((1,0))的对数型函数的一部分,图像

当直线段过点((1,0))((cfrac{1}{2},2lncfrac{1}{2}))时,斜率为(k=cfrac{2-2lncfrac{1}{2}}{1-cfrac{1}{2}}=4ln2)

由图像可知,要让这两个定义在(xin (0,cfrac{1}{2}))上的函数没有交点,

只需要函数(h(x))的斜率(2-a)小于等于斜率(k=4ln2)即可,

(2-aleq 4ln2),即则(a)的取值范围是(age 2(1-2ln2))

(a_{min}=2-4ln2)

解后反思:
1、法1是这类问题的通用解法,但是分离参数后得到的右端的函数,其单调性用导数判断可能很辛苦,这个题目就说明了这一点,而且用到了二阶导数,一般学生根本分不清一阶导数和二阶导数的关系,所以慎重使用。

2、法2比法1虽然都是分离参数法,但是我们感觉法2比法1要简单,其主要原因是法2采用的策略是,让函数简单些,让参数复杂些,这样运算量就小很多了。

3、法3将方程分离成立两个基本初等函数的形式,这样就可以很快很容易的使用形来解决问题了,到此我们也能体会命题人的意图,能将问题简化为我们学习过的,简单模型的学生,是不是其思维具有更好的可塑性。

第22题(坐标系与参数方程)

已知圆锥曲线(C:egin{cases}x=2cosalpha\y=sqrt{3}cosalphaend{cases}(alpha为参数))和定点(A(0,sqrt{3}))(F_1,F_2)是此圆锥曲线的左右焦点,以原点为极点,以(x)轴正半轴为极轴建立极坐标系。

(1)求直线(AF_2)的直角坐标方程;

(2)经过点(F_1)且与直线(AF_2)垂直的直线(l)交此圆锥曲线于(M,N)两点,求(||MF_1|-|NF_1||)的值。

分析:(1)消参数得到曲线(C)的直角坐标方程为(cfrac{x^2}{4}+cfrac{y^2}{3}=1)

由于(A(0,sqrt{3}))(F_2( 1,0)),故直线方程为(sqrt{3}x+y-sqrt{3}=0)

此时直线的斜率为(k_0=-sqrt{3})

(2)由上可知,直线(l)的斜率为(k_1=cfrac{sqrt{3}}{3}),即倾斜角为(alpha=cfrac{pi}{6})

又点(F_1(-1,0)),故直线(l)的参数方程为(egin{cases}x=x_0+cosalphacdot t\y=y_0+sinalpha cdot t end{cases}(t为参数))

(egin{cases}x=-1+cfrac{sqrt{3}}{2} t\y=0+cfrac{1}{2} t end{cases}(t为参数))

将其代入曲线(C)的直角坐标方程(cfrac{x^2}{4}+cfrac{y^2}{3}=1)

整理为(13t^2-12sqrt{3}t-36=0)

容易证明(Delta >0),令(M,N)分别对应的参数为(t_1,t_2)

则有(t_1+t_2=cfrac{12sqrt{3}}{13}>0)(t_1t_2=-cfrac{36}{13}<0)

(t_1,t_2)异号,(t_1>0,t_2<0)(t_1<0,t_2>0)

(|MF_1|-|NF_1|=-t_1-t_2),或者 (|MF_1|-|NF_1|=t_1+t_2)

(||MF_1|-|NF_1||=|t_1+t_2|=cfrac{12sqrt{3}}{13})

解后反思:

1、有学生得到故直线(l)的参数方程为(egin{cases}x=-1+3m\y=0+sqrt{3}m end{cases}(m为参数))

这个也是直线(l)的参数方程,不过这个方程不是直线的参数方程的标准形式,也就是说(m)(t)的含义不一样。

2、我们可以将这个非标准形式的参数方程转化为标准形式的参数方程。如下转化:

(egin{cases}x=-1+3m=-1+cfrac{3}{sqrt{3^2+(sqrt{3})^2}}cdot sqrt{3^2+(sqrt{3})^2}cdot m \y=0+cfrac{sqrt{3}}{sqrt{3^2+(sqrt{3})^2}}cdotsqrt{3^2+(sqrt{3})^2}cdot m end{cases}(m为参数))

(egin{cases}x=-1+cfrac{3}{2sqrt{3}}cdot 2sqrt{3}cdot m \y=cfrac{sqrt{3}}{2sqrt{3}}cdot 2sqrt{3}cdot m end{cases}(m为参数))

(egin{cases}x=-1+cfrac{sqrt{3}}{2}cdot 2sqrt{3}cdot m \y=cfrac{1}{2}cdot 2sqrt{3}cdot m end{cases}(m为参数))

此时令(2sqrt{3}m=t),则上述参数方程变形为

(egin{cases}x=-1+cfrac{sqrt{3}}{2}cdot t\y=cfrac{1}{2}cdot t end{cases}(t为参数))

原文地址:https://www.cnblogs.com/wanghai0666/p/8909006.html