朴素贝叶斯原理

1.朴素贝叶斯的使用条件

朴素贝叶斯方法假设条件概率分布是相互独立的,这个假设会使每个属性独立的对分类结果产生影响

因此,根据独立性有,$p(x_1,x_2,...,x_n|C) = p(x_1|C)p(x_2|C)...p(x_n|C),其中x_n是特征,C是分类的类别$

2.贝叶斯公式

由于朴素贝叶斯假设属性之间相互独立,所以贝叶斯公式可以写成如下形式

$p(C|mathbf x) = {p(C)  p(x_1,x_2,...,x_n | C)over p(x_1,x_2,...,x_n)} = {p(C) over p(x_1,x_2,...,x_n)} p(x_1 | C) p(x_2 | C)  ldots p(x_n | C)$

 3.贝叶斯分类器

1)训练数据集的n个特征为$x = (x_1,x_2,ldots,x_n)$

2)假设C代表分类的类别

分别计算概率$p(x_1 | C), p(x_2 | C),  ldots ,p(x_n | C)$

计算$p(C)$

由于$p(x_1,x_2,...,x_n)$对于所有的C类来说都是一样的,所以可以把这一项看做常数,因此

$p(C|mathbf x) propto p(C) p(x_1 | C) p(x_2 | C)  ldots p(x_n | C)$

其中 $propto$表示成比例关系,如y = kx可以写成$y propto x$

3)故要想使$p(C|mathbf x)$最大,即使$ p(C) p(x_1 | C) p(x_2 | C)  ldots p(x_n | C)$最大

$hat C = argmax p(C) p(x_1 | C) p(x_2 | C)  ldots p(x_n | C) $

4.例子

判断$mathbf x = ${Outlook = Sunny,Temperature = Cool,Humidty = High,Wind = Strong}能不能打网球

Outlook{Sunny、Overcast、Rain}

Temperature{Hot、Mild、Cool}

Humidty{High、Normal}

Wind{Weak、Strong}

1)$x = (x_1,x_2,x_3,x_4)$,其中$x_1$是Outlook = Sunny、$x_2$是Temperature = Cool、$x_3$是Humidty = High、$x_4$是Wind = Strong

2)为了更直观的计算概率$p(x_1 | C), p(x_2 | C),p(x_3 | C) ,p(x_4 | C)$,将上表整理成如下形式,其中C是分类的类别Play = yes 或 Play = No

 

$p(x_1 | Play = yes) = {2over 9}$    $p(x_1 | Play = No) = {3over 5}$

$p(x_2 | Play = yes) = {3over 9}$    $p(x_2 | Play = No) = {1over 5}$

$p(x_3 | Play = yes) = {3over 9}$    $p(x_3 | Play = No) = {4over 5}$

$p(x_4 | Play = yes) = {3over 9}$    $p(x_4 | Play = No) = {3over 5}$

$p(Play = yes) = {9over 14}$      $p(Play = yes) = {5over 14}$

3) $p(Play = yes) p(x_1 | Play = yes)p(x_2 | Play = yes)p(x_3 | Play = yes)p(x_4 | Play = yes) = 0.005$

$p(Play = No) p(x_1 | Play = No)p(x_2 | Play = No)p(x_3 | Play = No)p(x_4 | Play = No) = 0.02$

故$mathbf x = ${Outlook = Sunny,Temperature = Cool,Humidty = High,Wind = Strong}不能打网球

原文地址:https://www.cnblogs.com/vshen999/p/10301095.html