Matlab function lorenzgui

function lorenzgui
%LORENZGUI   Plot the orbit around the Lorenz chaotic attractor.
%   This function animates the integration of the three coupled
%   nonlinear differential equations that define the Lorenz Attractor,
%   a chaotic system first described by Edward Lorenz of MIT.
%   As the integration proceeds you will see a point moving in
%   an orbit in 3-D space known as a strange attractor.
%   The orbit ranges around two different critical points, or attractors.
%   The orbit is bounded, but may not be periodic and or convergent.
%
%   The mouse and arrow keys change the 3-D viewpoint.  Uicontrols
%   provide "pause", "resume", "stop", "restart", "clear", and "close".
%
%   A listbox provides a choice among five values of the parameter rho.
%   The first value, 28, is the most common and produces the chaotic
%   behavior.  The other four values values produce periodic behaviors
%   of different complexities.  A change in rho becomes effective only
%   after a "stop" and "restart".
%
%   Reference: Colin Sparrow, "The Lorenz Equations: Bifurcations,
%   Chaos, and Strange Attractors", Springer-Verlag, 1982.

if ~isequal(get(gcf,'name'),'Lorenz Gui')
   
   % This is first entry, just initialize the figure window.

   rhos = [28 99.65 100.5 160 350];
   shg
   clf reset
   p = get(gcf,'pos');
   set(gcf,'color','black','doublebuff','on','name','Lorenz Gui', ...
      'menu','none','numbertitle','off', ...
      'pos',[p(1) p(2)-(p(3)-p(4))/2 p(3) p(3)])

   % Callback to erase comet by jiggling figure position

   klear = ['set(gcf,''pos'',get(gcf,''pos'')+[0 0 0 1]), drawnow,' ...
            'set(gcf,''pos'',get(gcf,''pos'')-[0 0 0 1]), drawnow'];

   % Uicontrols

   paws = uicontrol('style','toggle','string','start', ...
      'units','norm','pos',[.02 .02 .10 .04],'value',0, ...
      'callback','lorenzgui');
   stop = uicontrol('style','toggle','string','close', ...
      'units','norm','pos',[.14 .02 .10 .04],'value',0, ...
      'callback','cameratoolbar(''close''), close(gcf)');
   clear = uicontrol('style','push','string','clear', ...
      'units','norm','pos',[.26 .02 .10 .04], ...
      'callback',klear);
   rhostr = sprintf('%6.2f|',rhos);
   rhopick = uicontrol('style','listbox','tag','rhopick', ...
      'units','norm','pos',[.82 .02 .14 .14], ...
      'string',rhostr(1:end-1),'userdata',rhos,'value',1);

else

   % The differential equation is ydot = A(y)*y
   % With this value of eta, A is singular.
   % The eta's in A will be replaced by y(2) during the integration.

   rhopick = findobj('tag','rhopick');
   rhos = get(rhopick,'userdata');
   rho = rhos(get(rhopick,'value'));
   sigma = 10;
   beta = 8/3;
   eta = sqrt(beta*(rho-1));
   A = [ -beta    0     eta
            0  -sigma   sigma 
         -eta   rho    -1  ];
   
   % The critical points are the null vectors of A.
   % The initial value of y(t) is near one of the critical points.
   
   yc = [rho-1; eta; eta];
   y0 = yc + [0; 0; 3];
   
   % Integrate forever, or until the stop button is toggled.
   
   tspan = [0 Inf];
   opts = odeset('reltol',1.e-6,'outputfcn',@lorenzplot,'refine',4);
   ode45(@lorenzeqn, tspan, y0, opts, A);

end


% ------------------------------

function ydot = lorenzeqn(t,y,A)
%LORENZEQN  Equation of the Lorenz chaotic attractor.
%   ydot = lorenzeqn(t,y,A).
%   The differential equation is written in almost linear form.
%      ydot = A*y
%   where
%      A = [ -beta    0     y(2)
%               0  -sigma   sigma 
%            -y(2)   rho    -1  ];

A(1,3) = y(2);
A(3,1) = -y(2);
ydot = A*y;


% ------------------------------

function fin = lorenzplot(t,y,job,A)
%LORENZPLOT   Plot the orbit of the Lorenz chaotic attractor.

persistent Y

if isequal(job,'init')

   % Initialize axis and comet, R = axis settings, L = length of comet.

   rho = A(3,2);
   switch rho
      case 28,    R = [  5  45  -20  20  -25  25];  L = 100;
      case 99.65, R = [ 50 150  -35  35  -60  60];  L = 240;
      case 100.5, R = [ 50 150  -35  35  -60  60];  L = 120;
      case 160,   R = [100 220  -40  40  -75  75];  L = 165;
      case 350,   R = [285 435  -55  55 -105 105];  L =  80;
      otherwise,  R = [100 250  -50  50 -100 100];  L = 150;
   end
   set(gcf,'pos',get(gcf,'pos')+[0 0 0 1])
   drawnow
   set(gcf,'pos',get(gcf,'pos')-[0 0 0 1])
   drawnow
   if get(gca,'userdata') ~= rho, delete(gca), end
   set(gca,'color','black','pos',[.03 .05 .93 .95],'userdata',rho)
   axis(R);
   axis off

   comet(1) = line(y(1),y(2),y(3),'linestyle','none','marker','.', ...
      'erasemode','xor','markersize',25);
   comet(2) = line(NaN,NaN,NaN,'color','y','erasemode','none');
   comet(3) = line(NaN,NaN,NaN,'color','y','erasemode','none');
   Y = y(:,ones(L,1));

   uics = flipud(get(gcf,'children'));
   paws = uics(1);
   stop = uics(2);
   set(paws,'string','pause','callback','','value',0);
   set(stop,'string','stop','callback','','value',0);

   beta = -A(1,1);
   eta = sqrt(beta*(rho-1));
   yc = [rho-1; eta; eta];
   line(yc(1),yc(2),yc(3),'linestyle','none','marker','o','color','g')
   line(yc(1),-yc(2),-yc(3),'linestyle','none','marker','o','color','g')

   ax = [R(2) R(1) R(1) R(1) R(1)];
   ay = [R(3) R(3) R(4) R(3) R(3)];
   az = [R(5) R(5) R(5) R(5) R(6)];
   p = .9;
   q = 1-p;
   grey = [.4 .4 .4];
   line(ax,ay,az,'color',grey);
   text(p*R(1)+q*R(2),R(3),p*R(5),sprintf('%3.0f',R(1)),'color',grey)
   text(q*R(1)+p*R(2),R(3),p*R(5),sprintf('%3.0f',R(2)),'color',grey)
   text(R(1),p*R(3)+q*R(4),p*R(5),sprintf('%3.0f',R(3)),'color',grey)
   text(R(1),q*R(3)+p*R(4),p*R(5),sprintf('%3.0f',R(4)),'color',grey)
   text(R(1),R(3),p*R(5)+q*R(6),sprintf('%3.0f',R(5)),'color',grey)
   text(R(1),R(3),q*R(5)+p*R(6),sprintf('%3.0f',R(6)),'color',grey)
   fin = 0;

   cameratoolbar('setmode','orbit')
   uicontrol('style','text','units','norm','pos',[.38 .02 .34 .04], ...
      'foreground','white','background','black','fontangle','italic', ...
      'string','Click on axis to rotate view')

elseif isequal(job,'done')

   fin = 1;

else

   % Update comet

   L = size(y,2);
   Y(:,end+1:end+L) = y;
   comet = flipud(get(gca,'children'));
   set(comet(1),'xdata',Y(1,end),'ydata',Y(2,end),'zdata',Y(3,end));
   set(comet(2),'xdata',Y(1,2:end),'ydata',Y(2,2:end),'zdata',Y(3,2:end))
   set(comet(3),'xdata',Y(1,1:2),'ydata',Y(2,1:2),'zdata',Y(3,1:2))
   Y(:,1:L) = [];
   drawnow;

   % Pause and restart

   uics = flipud(get(gcf,'children'));
   paws = uics(1);
   stop = uics(2);
   rhopick = uics(4);
   rho = A(3,2);
   while get(paws,'value')==1 & get(stop,'value')==0
      set(paws,'string','resume');
      drawnow;
   end
   set(paws,'string','pause')
   fin = get(stop,'value') | get(rhopick,'value')==rho;
   if fin
      set(paws,'value',0,'string','restart','callback','lorenzgui')
      set(stop,'value',0,'string','close', ...
         'callback','cameratoolbar(''close''), close(gcf)')
   end
end
原文地址:https://www.cnblogs.com/vigorz/p/10499196.html