Cauchy收敛准则

Cauchy数列:设({x_n})为一数列,如果对于任意给定的ε>0,都存在正整数N,使得

                                                 $|x_m-x_n|<ε,∀m,n>N$

则称({x_n})为Cauchy数列。

Cauchy收敛准则:数列({x_n})收敛的充分必要条件是它是Cauchy数列。

证明:先证必要性,设({x_n})为收敛于A的数列,由数列极限的定义,对任意ε>0,存在正整数N,当m,n>N时有

                                                 $|x_m-A|<ε,$|x_n-0|<ε

所以                                                 $|x_m-x_n|<2ε$

由ε的任意性,数列({x_n})是Cauchy数列。

下证充分性,设数列({x_n})是Cauchy数列。

取ε=1,存在正整数N,使得(|x_m-x_n|<1,∀m,n>N)

取n=N+1,有(|x_m-x_{N+1}|<1,∀m>N),从而(|x_m|<1+|x_{N+1}|,∀m>N)

令(M=1+∑_{k=1}^{N+1}|x_k|),则(|x_n|≤M),所以数列({x_n})有界,即存在上下极限。

由定义,$-ε<x_n-x_m<ε,∀m,n>N$

若m给定,令n→∞,取下极限(-ε≤lim(下极限){n→∞}x_n-x_m≤ε)

令m→∞,取上极限(-ε≤lim(下极限){n→∞}x_n-lim(上极限)_{n→∞}x_m≤ε)

由ε的任意性,数列({x_n})上下极限相等,即数列({x_n})收敛。

原文地址:https://www.cnblogs.com/valar-morghulis/p/13913153.html