基于mykernel2.0编写一个操作系统内核

1. 实验环境配置-mykernel 2.0(参考https://github.com/mengning/mykernel )

(1)虚拟机环境:VMware® Workstation 14 Pro + Ubuntu16.04.4 LTS

(2)打开终端,可以创建一个新目录来进行本次实验环境的搭建,按照下面的步骤配置实验环境

wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig 10 make -j$(nproc) 
sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage

环境搭建好后,输入 qemu-system-x86_64 -kernel arch/x86/boot/bzImage 命令,从qemu窗口中可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行

2. 编写一个操作系统内核(参照-https://github.com/mengning/mykernel 

(1)在linux-5.4.34下有一个mykernel目录,进入该目录,其中mymain.c 是内核运行的程序。当前有一个虚拟的CPU执行C代码的上下文环境,mymain.c中的代码在不停地执行。同时有一个中断处理程序的上下文环境,周期性地产生的时钟中断信号,能够触发myinterrupt.c中的代码。

接下来需要做的是,在mymain.c的基础上完成PCB和进程管理的代码,在myinterrupt.c的基础上完成进程切换代码,就可以完成一个可运行的OS kernel。

(2)首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义。

/*
 *  linux/mykernel/mypcb.h
 */

//最大的任务数
#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8


/* CPU-specific state of this task */
struct Thread {
    unsigned long       ip;
    unsigned long       sp;
}; //Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp

typedef struct PCB{
    int pid; /* 进程号 */
    volatile long state; /* 进程状态,-1表示就绪态,0表示运行态,大于0表示阻塞态*/
    char stack[KERNEL_STACK_SIZE]; //进程使用的堆栈
    /* CPU-specific state of this task */
    struct Thread thread;    //当前正在执行的线程信息
    unsigned long   task_entry; //进程入口函数
    struct PCB *next;
}tPCB;

//调度函数
void my_schedule(void);

3)对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。

#include "mypcb.h"


tPCB task[MAX_TASK_NUM]; //进程队列
tPCB * my_current_task = NULL; //当前进程
volatile int my_need_sched = 0;//进程调度标志


void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* 初始化0号进程 */
    task[pid].pid = pid;
    task[pid].state = 0;/* 0号进程运行 */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*创建更多进程*/
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = 0;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
      
"movq %1,%%rsp " /* 将当前进程的栈顶指针sp值赋值给rsp寄存器中*/ "pushq %1 " /* push rbp */ "pushq %0 " /* push task[pid].thread.ip */ "ret " /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d - ",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d + ",my_current_task->pid); } } }

 (4)对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现

#include "mypcb.h"


extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;


/*
 * Called by timer interrupt.
 */
void my_timer_handler(void) //时间片处理函数
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<
");
        my_need_sched = 1;
    }
    time_count ++ ;
    return;
}


void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;


    if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
      return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<
");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
      my_current_task = next;
      printk(KERN_NOTICE ">>>switch %d to %d<<<
",prev->pid,next->pid);
      /* switch to next process */
      asm volatile(
         "pushq %%rbp
	"       /* save rbp of prev */
         "movq %%rsp,%0
	"     /* save rsp of prev */
         "movq %2,%%rsp
	"     /* restore  rsp of next */
         "movq $1f,%1
	"       /* save rip of prev */
         "pushq %3
	"
         "ret
	"               /* restore  rip of next */
         "1:	"                  /* next process start here */
         "popq %%rbp
	"
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }
    return;
}

(5)重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换

 

3. 简要分析操作系统内核核心功能及运行工作机制

系统工作机制简要分析:

系统启动后,mymain.c中的my_start_kernel函数运行,里面是一个while(1) 循环,永远执行下去。

然后是myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复。

进程切换核心代码分析:

asm volatile(
         "pushq %%rbp
	"       /* 1 save rbp of prev */ 
         "movq %%rsp,%0
	"     /* 2 save rsp of prev */
         "movq %2,%%rsp
	"     /* 3 restore  rsp of next */
         "movq $1f,%1
	"       /* 4 save rip of prev */
         "pushq %3
	"        /* 5 save rip of next */   
         "ret
	"               /* 6 restore  rip of next */
         "1:	"                  /* 7 next process start here */
         "popq %%rbp
	"        /* 8 restore rbp of next  */
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }

step1:将前一个进程的rbp压入栈

step2:保存前一个进程的rsp

step3:将下一个进程的堆栈栈顶放入rsp

step4:保存prev进程的rip寄存器值(在$1f处)到prev->thread.ip,这里$1f是指标号1。

 step5:将下一个进程的指令入栈保存

step6:从栈中得到下一个进程的指令放进rip中

step7,8 将rbp寄存器的值修改为下一个进程的栈底

原文地址:https://www.cnblogs.com/ustc314/p/12850943.html