[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

将行列式 (|A|) 的第二列,(cdots),第 (n) 列全部加到第一列,可得

[ |A|=egin{vmatrix} sum_{i=1}^na_i+(n-2)a_1 & a_1+a_2 & cdots & a_1+a_{n-1} & a_1+a_n \ sum_{i=1}^na_i+(n-2)a_2 & 0 & cdots & a_2+a_{n-1} & a_2+a_n \ vdots & vdots & vdots & vdots & vdots \ sum_{i=1}^na_i+(n-2)a_{n-1} & a_{n-1}+a_2 & cdots & 0 & a_{n-1}+a_n \ sum_{i=1}^na_i+(n-2)a_n & a_n+a_2 & cdots & a_n+a_{n-1} & 0 end{vmatrix}. ]

将上述行列式的第一列拆分开,有

[ |A|=sum_{i=1}^na_iegin{vmatrix} 1 & a_1+a_2 & cdots & a_1+a_{n-1} & a_1+a_n \ 1 & 0 & cdots & a_2+a_{n-1} & a_2+a_n \ vdots & vdots & vdots & vdots & vdots \ 1 & a_{n-1}+a_2 & cdots & 0 & a_{n-1}+a_n \ 1 & a_n+a_2 & cdots & a_n+a_{n-1} & 0 end{vmatrix}]

[+(n-2)egin{vmatrix} a_1 & a_1+a_2 & cdots & a_1+a_{n-1} & a_1+a_n \ a_2 & 0 & cdots & a_2+a_{n-1} & a_2+a_n \ vdots & vdots & vdots & vdots & vdots \ a_{n-1} & a_{n-1}+a_2 & cdots & 0 & a_{n-1}+a_n \ a_n & a_n+a_2 & cdots & a_n+a_{n-1} & 0 end{vmatrix}. ]

对上式右边第一个行列式: 将第一列分别乘以 (-a_i) 加到第 (i) 列上,(i=2,cdots,n),再从每行提出公因子;对上式右边第二个行列式: 将第一列乘以 (-1) 分别加到第 (i) 列上,再从每列提出公因子,(i=2,cdots,n),可得

[ |A|=sum_{i=1}^na_iprod_{i=1}^na_iegin{vmatrix} frac{1}{a_1} & 1 & cdots & 1 & 1 \ frac{1}{a_2} & -1 & cdots & 1 & 1 \ vdots & vdots & vdots & vdots & vdots \ frac{1}{a_{n-1}} & 1 & cdots & -1 & 1 \ frac{1}{a_n} & 1 & cdots & 1 & -1 end{vmatrix}]

[+(n-2)prod_{i=2}^na_iegin{vmatrix} a_1 & 1 & cdots & 1 & 1 \ a_2 & -1 & cdots & 1 & 1 \ vdots & vdots & vdots & vdots & vdots \ a_{n-1} & 1 & cdots & -1 & 1 \ a_n & 1 & cdots & 1 & -1 end{vmatrix}. ]

对上式右边两个行列式: 都是第一行乘以 (-1) 分别加到第 (i) 行上,(i=2,cdots,n),可将它们都变为爪型行列式:

[ |A|=sum_{i=1}^na_iprod_{i=1}^na_iegin{vmatrix} frac{1}{a_1} & 1 & cdots & 1 & 1 \ frac{1}{a_2}-frac{1}{a_1} & -2 & cdots & 0 & 0 \ vdots & vdots & vdots & vdots & vdots \ frac{1}{a_{n-1}}-frac{1}{a_1} & 0 & cdots & -2 & 0 \ frac{1}{a_n}-frac{1}{a_1} & 0 & cdots & 0 & -2 end{vmatrix}]

[+(n-2)prod_{i=2}^na_iegin{vmatrix} a_1 & 1 & cdots & 1 & 1 \ a_2-a_1 & -2 & cdots & 0 & 0 \ vdots & vdots & vdots & vdots & vdots \ a_{n-1}-a_1 & 0 & cdots & -2 & 0 \ a_n-a_1 & 0 & cdots & 0 & -2 end{vmatrix}. ]

对上式右边两个行列式: 都是第 (i) 行乘以 (frac{1}{2}) 分别加到第一行上,(i=2,cdots,n),可得

[ |A|=sum_{i=1}^na_iprod_{i=1}^na_iegin{vmatrix} frac{1}{2}(sum_{i=1}^nfrac{1}{a_i})-frac{n-2}{2}frac{1}{a_1} & 0 & cdots & 0 & 0 \ frac{1}{a_2}-frac{1}{a_1} & -2 & cdots & 0 & 0 \ vdots & vdots & vdots & vdots & vdots \ frac{1}{a_{n-1}}-frac{1}{a_1} & 0 & cdots & -2 & 0 \ frac{1}{a_n}-frac{1}{a_1} & 0 & cdots & 0 & -2 end{vmatrix}]

[+(n-2)prod_{i=2}^na_iegin{vmatrix} frac{1}{2}(sum_{i=1}^na_ i)-frac{n-2}{2}a_1 & 0 & cdots & 0 & 0 \ a_2-a_1 & -2 & cdots & 0 & 0 \ vdots & vdots & vdots & vdots & vdots \ a_{n-1}-a_1 & 0 & cdots & -2 & 0 \ a_n-a_1 & 0 & cdots & 0 & -2 end{vmatrix} ]

[=(-2)^{n-2}prod_{i=1}^na_iigg((n-2)^2-Big(sum_{i=1}^na_iBig)Big(sum_{i=1}^nfrac{1}{a_i}Big)igg). quadBox]

原文地址:https://www.cnblogs.com/torsor/p/4034188.html