Legendre公式和Kummer定理

Legendre公式

对于质数(p),函数(v_p(n))(n)标准分解后(p)的次数

显然有

[v_p(n!) = sumlimits_{i = 1}^{infty} lfloor frac{n}{p^i} floor ]

令函数(s_p(n))(n)(p)进制下的数位和

有:

[v_p(n!) = frac{n - s_p(n)}{p - 1} ]

证明:

(n = sumlimits_{i = 0}^{infty} c_i p^i)

(v_p(n!) = sumlimits_{i = 1}^{infty} lfloor frac{n}{p^i} floor)

(= sumlimits_{i = 1}^{infty} sumlimits_{j = i}^{infty} c_j p^{j - i})

(= sumlimits_{j = 1}^{infty} c_j sumlimits_{i = 0}^{j - 1} p^i)

(= sumlimits_{j = 1}^{infty} frac{c_j(p^j - 1)}{p - 1})

(= frac{1}{p - 1} (sumlimits_{i = 0}^{infty} c_i p^i - sumlimits_{i = 0}^{infty} c_i))

$= frac{n - s_p(n)}{p - 1} $

Kummer定理

二项式系数

[v_p(inom{n}{m}) = frac{s_p(m) + s_p(n - m) - s_p(n)}{p - 1} ]

同时也等于在(p)进制下运算(n - m)时退位的次数

多项式系数

(inom{n}{m_1, cdots, m_k} = frac{n!}{m_1! cdots m_k!})

[v_p(inom{n}{m_1, cdots, m_k}) = frac{sumlimits_{i = 1}^k s_p(m_i) - s_p(n)}{p - 1} ]

原文地址:https://www.cnblogs.com/tkandi/p/10417644.html