bzoj 2818: Gcd

2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 6863  Solved: 3035
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)


1<=N<=10^7

/*
    gcd(x,y)=p,则gcd(x/p,y/p)=1
    法一:欧拉函数
    枚举每个素数p,那么该素数p对答案的贡献为[1,n/p]中的有序互质对的个数
    求[1,m]中有序互质对(i,j)的个数:
    
    令j>=i
    当i=j时,只有i=j=1互质;
    当i<j时,确定j后,互质的个数为φ(j);
    所以[1,m]中有序互质对个数=(Σ φ(j))*2-1
    
    所以,欧拉筛筛出欧拉函数,求前缀和sum
    ans=  Σ sum[n/p]*2-1
      p为素数,p<=n
*/
#include<iostream>
#include<cstdio>
#define maxn 10000001
using namespace std;
int n,prime[maxn],cnt,phi[maxn];
long long ans,sum[maxn];
bool v[maxn];
void euler(){
    phi[1]=1;
    for(int i=2;i<=n;i++){
        if(!v[i]){prime[++cnt]=i;v[i]=1;phi[i]=i-1;}
        for(int j=1;j<=cnt;j++){
            if(prime[j]*i>n)break;
            v[prime[j]*i]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}
int main(){
    scanf("%d",&n);
    euler();
    for(int i=1;i<=n;i++)sum[i]=sum[i-1]+phi[i];
    for(int i=1;i<=cnt;i++)ans+=sum[n/prime[i]]*2-1;
    cout<<ans;
}
欧拉函数

$LARGEsum ^{n}_{i=1}sum ^{n}_{j=1}gcd left( i,j ight)$是质数

$LARGEsum ^{n}_{i=1}sum ^{n}_{j=1}[dfrac {gcd left( ij ight) }{P}==1]$

$LARGEsum ^{n}_{p}sum ^{n,p}_{i=1}sum ^{n/p}_{j=1}left[ gcd  left(i,j ight) ==1 ight]$

$LARGEsum ^{n}_{p}sum ^{n/p}_{i=1}sum ^{n/p}_{j=1}sum _{d|gcd left( icdot j ight) }mu left( d ight)$

$LARGEsum ^{n}_{p}sum ^{n/p}_{d=1}mu left( d ight) sum ^{n/P/d}_{i=1}sum ^{n/p/d }_{j=1}$

$LARGEsum ^{n}_{p}sum ^{n/P}_{d=1}mu left( d ight) lfloordfrac {dfrac {n}{p}}{d} floor lfloordfrac {dfrac {n}{p}}{d} floor$

#include<iostream>
#include<cstdio>
#define maxn 10000010
using namespace std;
bool v[maxn];
int n,cnt;
long long ans,prime[maxn],mul[maxn];
void mobius(){
    mul[1]=1;
    for(int i=2;i<=n;i++){
        if(!v[i]){v[i]=1;prime[++cnt]=i;mul[i]=-1;}
        for(int j=1;j<=cnt;j++){
            if(prime[j]*i>n)break;
            v[prime[j]*i]=1;
            if(i%prime[j]==0){
                mul[i*prime[j]]=0;
                break;
            }
            else mul[i*prime[j]]=-mul[i];
        }
    }
}
int main(){
    scanf("%d",&n);
    mobius();
    for(int i=1;i<=cnt;i++)
        for(int j=1;j<=n/prime[i];j++)
            ans+=mul[j]*(n/prime[i]/j)*(n/prime[i]/j);
    cout<<ans;
}
莫比乌斯函数
原文地址:https://www.cnblogs.com/thmyl/p/8125978.html