4.基于梯度的攻击——MIM

MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf

1.MIM攻击的原理

  MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关。其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,那么迭代轮数靠前算出来的梯度对当前的梯度方向影响越小。其实仔细想想,这样做也很有道理,由于之前的梯度对后面的迭代也有影响,那么这使得,迭代的方向不会跑偏,使得总体的大方向是对的。到目前为止都是笔者对MIM比较感性的认识,下面贴出论文中比较学术的观点。

 其实为了加速梯度下降,通过累积损失函数的梯度方向上的矢量,从而(1)稳定更新(2)有助于通过 narrow valleys, small humps and poor local minima or maxima.(专业名词不知道怎么翻译,可以脑补函数图像,大致意思就是,可以有效避免局部最优)

是decay_factor,另外,在原论文中,每一次迭代对x的导数是直接算的1-范数,然后求平均,但在各个算法库以及论文实现的补充中,并没有求平均,估计这个对结果影响不太大。

2.代码实现(直接把advertorch里的代码贴过来了)

 1 class MomentumIterativeAttack(Attack, LabelMixin):
 2     """
 3     The L-inf projected gradient descent attack (Dong et al. 2017).
 4     The attack performs nb_iter steps of size eps_iter, while always staying
 5     within eps from the initial point. The optimization is performed with
 6     momentum.
 7     Paper: https://arxiv.org/pdf/1710.06081.pdf
 8     """
 9 
10     def __init__(
11             self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1.,
12             eps_iter=0.01, clip_min=0., clip_max=1., targeted=False):
13         """
14         Create an instance of the MomentumIterativeAttack.
15 
16         :param predict: forward pass function.
17         :param loss_fn: loss function.
18         :param eps: maximum distortion.
19         :param nb_iter: number of iterations
20         :param decay_factor: momentum decay factor.
21         :param eps_iter: attack step size.
22         :param clip_min: mininum value per input dimension.
23         :param clip_max: maximum value per input dimension.
24         :param targeted: if the attack is targeted.
25         """
26         super(MomentumIterativeAttack, self).__init__(
27             predict, loss_fn, clip_min, clip_max)
28         self.eps = eps
29         self.nb_iter = nb_iter
30         self.decay_factor = decay_factor
31         self.eps_iter = eps_iter
32         self.targeted = targeted
33         if self.loss_fn is None:
34             self.loss_fn = nn.CrossEntropyLoss(reduction="sum")
35 
36     def perturb(self, x, y=None):
37         """
38         Given examples (x, y), returns their adversarial counterparts with
39         an attack length of eps.
40 
41         :param x: input tensor.
42         :param y: label tensor.
43                   - if None and self.targeted=False, compute y as predicted
44                     labels.
45                   - if self.targeted=True, then y must be the targeted labels.
46         :return: tensor containing perturbed inputs.
47         """
48         x, y = self._verify_and_process_inputs(x, y)
49 
50         delta = torch.zeros_like(x)
51         g = torch.zeros_like(x)
52 
53         delta = nn.Parameter(delta)
54 
55         for i in range(self.nb_iter):
56 
57             if delta.grad is not None:
58                 delta.grad.detach_()
59                 delta.grad.zero_()
60 
61             imgadv = x + delta
62             outputs = self.predict(imgadv)
63             loss = self.loss_fn(outputs, y)
64             if self.targeted:
65                 loss = -loss
66             loss.backward()
67 
68             g = self.decay_factor * g + normalize_by_pnorm(
69                 delta.grad.data, p=1)
70             # according to the paper it should be .sum(), but in their
71             #   implementations (both cleverhans and the link from the paper)
72             #   it is .mean(), but actually it shouldn't matter
73 
74             delta.data += self.eps_iter * torch.sign(g)
75             # delta.data += self.eps / self.nb_iter * torch.sign(g)
76 
77             delta.data = clamp(
78                 delta.data, min=-self.eps, max=self.eps)
79             delta.data = clamp(
80                 x + delta.data, min=self.clip_min, max=self.clip_max) - x
81 
82         rval = x + delta.data
83         return rval
View Code

 个人觉得,advertorch中在迭代过程中,应该是对imgadv求导,而不是对delta求导,笔者查看了foolbox和cleverhans的实现,都是对每一轮的对抗样本求导,大家自己实现的时候可以改一下。

 
原文地址:https://www.cnblogs.com/tangweijqxx/p/10623831.html