有上下界的网络流题目泛做

题目1 ZOJ2314 无源汇可行流

题目大意:

给一张有向图,每条边有容量上界可容量下界,求是否有可行流?

如果有,输出每条边的流量。

算法讨论:

首先,计算出每个点的M(i)值,就是流入下界和-流出下界和,如果M(i)小于0,就从i向T连-M(i)的边,如果M(i)大于0,就从S向i连M(i)的边。

同时原图中的边的容量为上界减下界。跑一遍从S到T的最大流。

判断是否有可行流的方法:如果所有与S相连的出边都满流,则说明有可行流。否则没有。

每条边流量的值 = 这条边的流量下界 + 其反向边的流量。

代码:

#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>

using namespace std;

const int N = 200 + 5;
const int M = 40000 + 5;
const int oo = 0x3f3f3f3f;

int n, m;
int d[N], low[M];

struct Edge {
  int from, to, cap, flow;
  Edge(int u = 0, int v = 0, int cp = 0, int fw = 0):
	from(u), to(v), cap(cp), flow(fw) {}
};

struct Dinic {
  int n, mm, s, t;
  int dis[N], cur[N], que[N * 5];
  bool vis[N];
  vector <Edge> edges;
  vector <int> G[N];

  void clear() {
	for(int i = 0; i <= n; ++ i) G[i].clear();
	edges.clear();
  }

  void insert(int from, int to, int cap) {
	edges.push_back((Edge){from, to, cap, 0});
	edges.push_back((Edge){to, from, 0, 0});
	mm = edges.size();
	G[from].push_back(mm - 2);
	G[to].push_back(mm - 1);
  }

  bool bfs() {
	int head = 1, tail = 1;
	memset(vis, false, sizeof vis);
	dis[s] = 0; vis[s] = true; que[head] = s;
	while(head <= tail) {
	  int x = que[head];
	  for(int i = 0; i < (signed) G[x].size(); ++ i) {
		Edge &e = edges[G[x][i]];
		if(!vis[e.to] && e.cap > e.flow) {
		  vis[e.to] = true;
		  dis[e.to] = dis[x] + 1;
		  que[++ tail] = e.to;
		}
	  }
	  ++ head;
	}
	return vis[t];
  }

  int dfs(int x, int a) {
	if(x == t || a == 0) return a;
	int flw = 0, f;
	for(int &i = cur[x]; i < (signed) G[x].size(); ++ i) {
	  Edge &e = edges[G[x][i]];
	  if(dis[e.to] == dis[x] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0) {
		e.flow += f; edges[G[x][i] ^ 1].flow -= f; a -= f; flw += f;
		if(a == 0) break;
	  }
	}
	return flw;
  }

  void mx(int s, int t) {
	this->s = s; this->t = t;
	int flw = 0;
	while(bfs()) {
	  memset(cur, 0, sizeof cur);
	  flw += dfs(s, oo);
	}
  }

  void getans() {
	bool flag = true;
	for(int i = 0; i < (signed) G[0].size(); ++ i) {
	  Edge e = edges[G[0][i]];
	  if(e.cap - e.flow > 0) flag = false;
	}
	if(!flag) puts("NO");
	else {
	  puts("YES");
	  for(int i = 0; i < m * 2; i += 2) {
		printf("%d
", low[(i + 2) >> 1] + edges[i ^ 1].cap - edges[i ^ 1].flow);
	  }
	}
  }
}net;

int main() {
  int t, u, v, l, r;
  bool flag = false;
  scanf("%d", &t);
  while(t --) {
	if(flag) puts("");
	else flag = true;
	scanf("%d%d", &n, &m);
	net.clear(); net.n = n + 1;
	for(int i = 1; i <= m; ++ i) {
	  scanf("%d%d%d%d", &u, &v, &l, &r);
	  d[u] -= l; d[v] += l; low[i] = l;
	  net.insert(u, v, r - l);
	}
	for(int i = 1; i <= n; ++ i) {
	  if(d[i] > 0) net.insert(0, i, d[i]);
	  else if(d[i] < 0) net.insert(i, n + 1, -d[i]);
	}
	net.mx(0, n + 1);
	net.getans();
	memset(d, 0, sizeof d);
  }
  return 0;
}

题目2 SGU 176 有源汇最小流

题目大意:

给一张图和每条边的一个容量上限,还有一个参数,如果参数是1,则要求这条边必须满流,否则不做要求,求1->n最小流。

算法讨论:

如果必须满流,则是上下界都是流量,如果不做要求,则下界是0,上界是流量。

转化后,先求出每个点的M(i)值,对于M(i)的连边还是像上面一样,同时原图中上下界都是容量的边则不用连边了,下界是0的连容量为流量的边。

如此连边后,从超级源点S向超级汇点T跑一次MaxFlow,然后加一条从n->1流量为正无穷的边,再从S向T流一次MaxFlow。

对于答案,先判断是否有可行流,就是与超级源直接相连的边全部满流,说明有可行流。

那么最小流的流量就是从n->1反向边的流量。

那么每个边的流量要么是其容量,要么是其相反边的流量。所以对于每条边要记录一个编号,方便更新答案时使用。

代码:

/*
以此代码纪念我们的相识。
河北 鹿泉一中 NOC竞赛
*/

#include <cstdlib>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>

using namespace std;
const int N = 100 + 5;
const int M = 10000 + 5;
const int oo = 0x3f3f3f3f;

int n, m, d[N], tmp;
int ans[M];

struct Edge {
  int from, to, cap, flow, id;
  Edge(int u=0, int v=0, int cp=0, int fw=0, int id=0):
	from(u), to(v), cap(cp), flow(fw), id(id) {}
};

struct Dinic {
  int n, mm, s, t;
  int dis[N], que[N * 100], cur[N];
  bool vis[N];
  vector <Edge> edges;
  vector <int> G[N];

  void add(int from, int to, int cap, int id) {
	edges.push_back(Edge(from, to, cap, 0, id));
	edges.push_back(Edge(to, from, 0, 0, 0));
	mm = edges.size();
	G[from].push_back(mm - 2);
	G[to].push_back(mm - 1);
  }

  bool bfs() {
	int head = 1, tail = 1;
	memset(vis, false, (n + 2) * sizeof (bool));
	dis[s] = 0; vis[s] = true; que[head] = s;
	while(head <= tail) {
	  int x = que[head];
	  for(int i = 0; i < (signed)G[x].size(); ++ i) {
		Edge &e = edges[G[x][i]];
		if(!vis[e.to] && e.cap > e.flow) {
		  vis[e.to] = true;
		  dis[e.to] = dis[x] + 1;
		  que[++ tail] = e.to;
		}
	  }
	  ++ head;
	}
	return vis[t];
  }

  int dfs(int x, int a) {
	if(x == t || a == 0) return a;
	int flw = 0, f;
	for(int &i = cur[x]; i < (signed) G[x].size(); ++ i) {
	  Edge &e = edges[G[x][i]];
	  if(dis[e.to] == dis[x] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0) {
		e.flow += f; edges[G[x][i] ^ 1].flow -= f; a -= f; flw += f;
		if(a == 0) break;
	  }
	}
	return flw;
  }

  int mx(int s, int t) {
	this->s = s; this->t = t;
	int flw = 0;
	while(bfs()) {
	  memset(cur, 0, sizeof cur);
	  flw += dfs(s, oo);
	}
	return flw;
  }

  void getans() {
	bool flag = false;
	for(int i = 0; i < (signed) G[0].size(); ++ i) {
	  Edge e = edges[G[0][i]];
	  if(e.cap - e.flow > 0) {
		flag = true; break;
	  }
	}
	if(flag) puts("Impossible");
	else {
	  for(int i = 0; i < (signed) G[n - 1].size(); ++ i) {
		Edge e = edges[G[n - 1][i]];
		if(e.to == 1) {
		  printf("%d
", edges[G[n - 1][i] ^ 1].cap - edges[G[n - 1][i] ^ 1].flow);
		  break;
		}
	  }
	  for(int i = 0; i < 2 * tmp; i += 2) {
		ans[edges[i].id] = edges[i ^ 1].cap - edges[i ^ 1].flow;
	  }
	  for(int i = 1; i <= m; ++ i) {
		if(i - 1) printf(" %d", ans[i]);
		else printf("%d", ans[i]);
	  }
	}
  }
}net;

int main() {
  int u, v, c, type;
  scanf("%d%d", &n, &m);
  net.n = n + 1;
  for(int i = 1; i <= m; ++ i) {
	scanf("%d%d%d%d", &u, &v, &c, &type);
	if(type) {
	  d[u] -= c; d[v] += c; ans[i] = c;
	}
	else net.add(u, v, c, i), ++ tmp;
  }
  for(int i = 1; i <= n; ++ i) {
	if(d[i] < 0) net.add(i, n + 1, -d[i], 0);
	else if(d[i] > 0) net.add(0, i, d[i], 0);
  }
  net.mx(0, n + 1);
  net.add(n, 1, oo, 0);
  net.mx(0, n + 1);
  net.getans();
  return 0;
}
原文地址:https://www.cnblogs.com/sxprovence/p/5368024.html