ReentrantLock源码之一lock方法解析(锁的获取)

已剪辑自: http://www.blogjava.net/zhanglongsr/articles/356782.html

一、前言

ReentrantLock是JDK1.5引入的,它拥有与synchronized相同的并发性和内存语义,并提供了超出synchonized的其他高级功能(例如,中断锁等候、条件变量等),并且使用ReentrantLock比synchronized能获得更好的可伸缩性。

ReentrantLock的实现基于AQS(AbstractQueuedSynchronizer)和LockSupport。
AQS主要利用硬件原语指令(CAS compare-and-swap),来实现轻量级多线程同步机制,并且不会引起CPU上文切换和调度,同时提供内存可见性和原子化更新保证(线程安全的三要素:原子性、可见性、顺序性)。

AQS的本质上是一个同步器/阻塞锁的基础框架,其作用主要是提供加锁、释放锁,并在内部维护一个FIFO等待队列,用于存储由于锁竞争而阻塞的线程。

二、关键代码分析

1.关键字段

AQS使用链表作为队列,使用volatile变量state,作为锁状态标识位。

    /**
     * Head of the wait queue, lazily initialized.  Except for
     * initialization, it is modified only via method setHead.  Note:
     * If head exists, its waitStatus is guaranteed not to be
     * CANCELLED.
     */
    private transient volatile Node head; // 等待队列的头

    /**
     * Tail of the wait queue, lazily initialized.  Modified only via
     * method enq to add new wait node.
     */
    private transient volatile Node tail; // 等待队列的尾

    /**
     * The synchronization state.
     */
    private volatile int state; //原子性的锁状态位,ReentrantLock对该字段的调用是通过原子操作compareAndSetState进行的

    /**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a {@code volatile} read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */
    protected final boolean compareAndSetState(int expect, int update) {
        return STATE.compareAndSet(this, expect, update);
    }


**2.ReentrantLock的公平锁与非公平锁

**

从ReentrantLock的构造子可以看到,ReentrantLock提供两种锁:公平锁和非公平锁,其内部实现了两种同步器NonfairSync、FairSync派生自AQS,主要才采用了模板方法模式,主要重写了AQS的tryAcquire、lock方法,如下图。

img

    /**
     * Creates an instance of {@code ReentrantLock}.
     * This is equivalent to using {@code ReentrantLock(false)}.
     */
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

3.获取锁操作

    /**
     * Acquires the lock.
     *
     * <p>Acquires the lock if it is not held by another thread and returns
     * immediately, setting the lock hold count to one.
     *
     * <p>If the current thread already holds the lock then the hold
     * count is incremented by one and the method returns immediately.
     *
     * <p>If the lock is held by another thread then the
     * current thread becomes disabled for thread scheduling
     * purposes and lies dormant until the lock has been acquired,
     * at which time the lock hold count is set to one.
     */
    public void lock() {
        sync.acquire(1);
    }

由于NonfairSync、FairSync分别实现了lock方法,我们将分别探讨

**3.1.1acquire方法分析

** (1)如果尝试以独占的方式获得锁失败,那么就把当前线程封装为一个Node,加入到等待队列中;如果加入队列成功,接下来检查当前线程的节点是否应该等待(挂起),如果当前线程所处节点的前一节点的等待状态小于0,则通过LockSupport挂起当前线程;无论线程是否被挂起,或者挂起后被激活,都应该返回当前线程的中断状态,如果处于中断状态,需要中断当前线程。

package java.util.concurrent.locks.AbstractQueuedSynchronizer 
	/**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

    /**
     * Attempts to acquire in exclusive mode. This method should query
     * if the state of the object permits it to be acquired in the
     * exclusive mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread. This can be used
     * to implement method {@link Lock#tryLock()}.
     *
     * <p>The default
     * implementation throws {@link UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *        passed to an acquire method, or is the value saved on entry
     *        to a condition wait.  The value is otherwise uninterpreted
     *        and can represent anything you like.
     * @return {@code true} if successful. Upon success, this object has
     *         been acquired.
     * @throws IllegalMonitorStateException if acquiring would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }

**3.1.2nonfairTryAcquire分析

**
(1)如果锁状态空闲(state=0),且通过原子的比较并设置操作,那么当前线程获得锁,并把当前线程设置为锁拥有者;
(2)如果锁状态空闲,且原子的比较并设置操作失败,那么返回false,说明尝试获得锁失败;
(3)否则,检查当前线程与锁拥有者线程是否相等(表示一个线程已经获得该锁,再次要求该锁,这种情况叫可重入锁),如果相等,维护锁状态,并返回true;
(4)如果不是以上情况,说明锁已经被其他的线程持有,直接返回false;

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;
        protected final boolean tryAcquire(int acquires) {//对AQS的tryAcquire方法重写
            return nonfairTryAcquire(acquires);
        }
    }

		/**
         * Performs non-fair tryLock.  tryAcquire is implemented in
         * subclasses, but both need nonfair try for trylock method.
         */
        @ReservedStackAccess
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

**3.1.3addWaiter分析

** (1)如果tail节点不为null,说明队列不为空,则把新节点加入到tail的后面,返回当前节点,否则进入enq进行处理(2);
(2)如果tail节点为null,说明队列为空,需要建立一个虚拟的头节点,并把封装了当前线程的节点设置为尾节点;另外一种情况的发生,是由于在(1)中的compareAndSetTail可能会出现失败,这里采用for的无限循环,是要保证当前线程能够正确进入等待队列;

package java.util.concurrent.locks.AbstractQueuedSynchronizer
    /**
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
	private Node addWaiter(Node mode) {
        Node node = new Node(mode);

        for (;;) {
            Node oldTail = tail;
            if (oldTail != null) {
                node.setPrevRelaxed(oldTail);
                if (compareAndSetTail(oldTail, node)) {
                    oldTail.next = node;
                    return node;
                }
            } else {
                initializeSyncQueue();
            }
        }
    }

    /**
     * Inserts node into queue, initializing if necessary. See picture above.
     * @param node the node to insert
     * @return node's predecessor
     */
    private Node enq(Node node) {
        for (;;) {
            Node oldTail = tail;
            if (oldTail != null) {
                node.setPrevRelaxed(oldTail);
                if (compareAndSetTail(oldTail, node)) {
                    oldTail.next = node;
                    return oldTail;
                }
            } else {
                initializeSyncQueue();
            }
        }
    }

**3.1.4acquire分析

**(1)如果当前节点是队列的头结点(如果第一个节点是虚拟节点,那么第二个节点实际上就是头结点了),就尝试在此获取锁tryAcquire(arg)。如果成功就将头结点设置为当前节点(不管第一个结点是否是虚拟节点),返回中断状态。否则进行(2)。
(2)检测当前节点是否应该park()-"挂起的意思",如果应该park()就挂起当前线程并且返回当前线程中断状态。进行操作(1)。

package java.util.concurrent.locks.AbstractQueuedSynchronizer    
	/**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     *
     * @param node the node
     * @param arg the acquire argument
     * @return {@code true} if interrupted while waiting
     */
    final boolean acquireQueued(final Node node, int arg) {
        boolean interrupted = false;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node))
                    interrupted |= parkAndCheckInterrupt();
            }
        } catch (Throwable t) {
            cancelAcquire(node);
            if (interrupted)
                selfInterrupt();
            throw t;
        }
    }

** (1)如果前一个节点的等待状态waitStatus<0,也就是前面的节点还没有获得到锁,那么返回true,表示当前节点(线程)就应该park()了。否则进行(2)。
(2)如果前一个节点的等待状态waitStatus>0,也就是前一个节点被CANCELLED了,那么就将前一个节点去掉,递归此操作直到所有前一个节点的waitStatus<=0,进行(4)。否则进行(3)。
(3)前一个节点等待状态waitStatus=0,修改前一个节点状态位为SINGAL,表示后面有节点等待你处理,需要根据它的等待状态来决定是否该park()。进行(4)。
(4)返回false,表示线程不应该park()。

注意:一个Node节点可包含以下状态以及模式:

    /** waitStatus value to indicate thread has cancelled */  取消
    static final int CANCELLED = 1;
    /** waitStatus value to indicate successor's thread needs unparking */  信号等待(在AQS中,是通过LockSupport进行线程间信号交互的)
    static final int SIGNAL  = -1;
    /** waitStatus value to indicate thread is waiting on condition */    条件等待  
    static final int CONDITION = -2;
    /** Marker to indicate a node is waiting in shared mode */ 共享模式
    static final Node SHARED = new Node();
    /** Marker to indicate a node is waiting in exclusive mode */      独占模式
    static final Node EXCLUSIVE = null;
    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            pred.compareAndSetWaitStatus(ws, Node.SIGNAL);
        }
        return false;
    }


    /**
     * Convenience method to park and then check if interrupted.
     *
     * @return {@code true} if interrupted
     */
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

    /**
     * Convenience method to interrupt current thread.
     */
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

**3.2FairSync.lock()分析

**

公平锁相对与非公平锁,在锁的获取实现上,差别只在FairSync提供自己的tryAcquire()的方法实现,代码如下:

(1)如果锁状态为0,等待队列为空,或者给定的线程在队列的头部,那么该线程获得锁;
(2)如果当前线程与锁持有者线程相等,这种情况属于锁重入,锁状态加上请求数;
(3)以上两种情况都不是,返回false,说明尝试获得锁失败;

4.总结

ReentrantLock在采用非公平锁构造时,首先检查锁状态,如果锁可用,直接通过CAS设置成持有状态,且把当前线程设置为锁的拥有者。
如果当前锁已经被持有,那么接下来进行可重入检查,如果可重入,需要为锁状态加上请求数。如果不属于上面两种情况,那么说明锁是被其他线程持有,
当前线程应该放入等待队列。
在放入等待队列的过程中,首先要检查队列是否为空队列,如果为空队列,需要创建虚拟的头节点,然后把对当前线程封装的节点加入到队列尾部。由于设置尾部节点采用了CAS,为了保证尾节点能够设置成功,这里采用了无限循环的方式,直到设置成功为止。
在完成放入等待队列任务后,则需要维护节点的状态,以及及时清除处于Cancel状态的节点,以帮助垃圾收集器及时回收。如果当前节点之前的节点的等待状态小于1,说明当前节点之前的线程处于等待状态(挂起),那么当前节点的线程也应处于等待状态(挂起)。挂起的工作是由LockSupport类支持的,LockSupport通过JNI调用本地操作系统来完成挂起的任务(java中除了废弃的suspend等方法,没有其他的挂起操作)。
在当前等待的线程,被唤起后,检查中断状态,如果处于中断状态,那么需要中断当前线程。

下一节《ReentrantLock源码之一lock方法解析(锁的释放)》

原文地址:https://www.cnblogs.com/sweetorangezzz/p/13189170.html