内核态内存映射

内核页表

和用户态页表不同,在系统初始化的时候,我们就要创建内核页表了。我们从内核页表的根 swapper_pg_dir 开始找线索。

// arch/x86/include/asm/pgtable_64.h
extern pud_t level3_kernel_pgt[512];
extern pud_t level3_ident_pgt[512]; // 对应直接映射区
extern pmd_t level2_kernel_pgt[512]; // 对应内核代码区
extern pmd_t level2_fixmap_pgt[512]; // 对应固定映射区
extern pmd_t level2_ident_pgt[512];
extern pte_t level1_fixmap_pgt[512];
extern pgd_t init_top_pgt[];

#define swapper_pg_dir init_top_pgt // 指向内核最顶级的目录 pgd

内核页表的顶级目录 init_top_pgt,定义在 __INITDATA 里面。咱们讲过 ELF 的格式,也讲过虚拟内存空间的布局。它们都有代码段,还有一些初始化了的全局变量,放在.init 区域。这些说的就是这个区域。

可以看到,页表的根其实是全局变量,这就使得我们初始化的时候,甚至内存管理还没有初始化的时候,很容易就可以定位到。

// archx86kernelhead_64.S

__INITDATA

// quad 是声明了一项的内容,org 是跳到了某个位置
NEXT_PAGE(init_top_pgt)
  .quad   level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
  .org    init_top_pgt + PGD_PAGE_OFFSET*8, 0
  .quad   level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
  .org    init_top_pgt + PGD_START_KERNEL*8, 0
  /* (2^48-(2*1024*1024*1024))/(2^39) = 511 */
  .quad   level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE


NEXT_PAGE(level3_ident_pgt)
  .quad  level2_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
  .fill  511, 8, 0
NEXT_PAGE(level2_ident_pgt)
  /* Since I easily can, map the first 1G.
   * Don't set NX because code runs from these pages.
   */
  PMDS(0, __PAGE_KERNEL_IDENT_LARGE_EXEC, PTRS_PER_PMD)


NEXT_PAGE(level3_kernel_pgt)
  .fill  L3_START_KERNEL,8,0
  /* (2^48-(2*1024*1024*1024)-((2^39)*511))/(2^30) = 510 */
  .quad  level2_kernel_pgt - __START_KERNEL_map + _KERNPG_TABLE
  .quad  level2_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE


NEXT_PAGE(level2_kernel_pgt)
  /*
   * 512 MB kernel mapping. We spend a full page on this pagetable
   * anyway.
   *
   * The kernel code+data+bss must not be bigger than that.
   *
   * (NOTE: at +512MB starts the module area, see MODULES_VADDR.
   *  If you want to increase this then increase MODULES_VADDR
   *  too.)
   */
  PMDS(0, __PAGE_KERNEL_LARGE_EXEC,
    KERNEL_IMAGE_SIZE/PMD_SIZE)


NEXT_PAGE(level2_fixmap_pgt)
  .fill  506,8,0
  .quad  level1_fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE
  /* 8MB reserved for vsyscalls + a 2MB hole = 4 + 1 entries */
  .fill  5,8,0


NEXT_PAGE(level1_fixmap_pgt)
  .fill  51
View Code
// __PAGE_OFFSET_BASE: 虚拟地址空间里面内核的起始地址
// __START_KERNEL_map: 虚拟地址空间里面内核代码段的起始地址
PGD_PAGE_OFFSET = pgd_index(__PAGE_OFFSET_BASE)
PGD_START_KERNEL = pgd_index(__START_KERNEL_map)
L3_START_KERNEL = pud_index(__START_KERNEL_map)

如果是用户态进程页表,会有 mm_struct 指向进程顶级目录 pgd,对于内核来讲,也定义了一个 mm_struct,指向 swapper_pg_dir。

struct mm_struct init_mm = {
  .mm_rb    = RB_ROOT,
  .pgd    = swapper_pg_dir,
  .mm_users  = ATOMIC_INIT(2),
  .mm_count  = ATOMIC_INIT(1),
  .mmap_sem  = __RWSEM_INITIALIZER(init_mm.mmap_sem),
  .page_table_lock =  __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
  .mmlist    = LIST_HEAD_INIT(init_mm.mmlist),
  .user_ns  = &init_user_ns,
  INIT_MM_CONTEXT(init_mm)
};

定义完了内核页表,接下来是初始化内核页表,在系统启动的时候 start_kernel 会调用 setup_arch。

在 setup_arch 中,load_cr3(swapper_pg_dir) 说明内核页表要开始起作用了,并且刷新了 TLB,初始化 init_mm 的成员变量,最重要的就是 init_mem_mapping。最终它会调用 kernel_physical_mapping_init。

在 kernel_physical_mapping_init 里,我们先通过 __va 将物理地址转换为虚拟地址,然后再创建虚拟地址和物理地址的映射页表。

void __init setup_arch(char **cmdline_p)
{
  /*
   * copy kernel address range established so far and switch
   * to the proper swapper page table
   */
  clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
      initial_page_table + KERNEL_PGD_BOUNDARY,
      KERNEL_PGD_PTRS);


  load_cr3(swapper_pg_dir);
  __flush_tlb_all();
  ......
  init_mm.start_code = (unsigned long) _text;
  init_mm.end_code = (unsigned long) _etext;
  init_mm.end_data = (unsigned long) _edata;
  init_mm.brk = _brk_end;
  ......
  init_mem_mapping();
  ......
}


/*
 * Create page table mapping for the physical memory for specific physical
 * addresses. The virtual and physical addresses have to be aligned on PMD level
 * down. It returns the last physical address mapped.
 */
unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,
           unsigned long paddr_end,
           unsigned long page_size_mask)
{
  unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;

  paddr_last = paddr_end;
  vaddr = (unsigned long)__va(paddr_start);
  vaddr_end = (unsigned long)__va(paddr_end);
  vaddr_start = vaddr;

  for (; vaddr < vaddr_end; vaddr = vaddr_next) {
    pgd_t *pgd = pgd_offset_k(vaddr);
    p4d_t *p4d;

    vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;

    if (pgd_val(*pgd)) {
      p4d = (p4d_t *)pgd_page_vaddr(*pgd);
      paddr_last = phys_p4d_init(p4d, __pa(vaddr),
               __pa(vaddr_end),
               page_size_mask);
      continue;
    }

    p4d = alloc_low_page();
    paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
             page_size_mask);

    p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
  }
  __flush_tlb_all();

  return paddr_l
}

vmalloc 和 kmap_atomic 原理

在用户态可以通过 malloc 函数分配内存,当然 malloc 在分配比较大的内存的时候,底层调用的是 mmap,当然也可以直接通过 mmap 做内存映射,在内核里面也有相应的函数。

在虚拟地址空间里面,有个 vmalloc 区域,从 VMALLOC_START 开始到 VMALLOC_END,可以用于映射一段物理内存。

/**
 *  vmalloc  -  allocate virtually contiguous memory
 *  @size:    allocation size
 *  Allocate enough pages to cover @size from the page level
 *  allocator and map them into contiguous kernel virtual space.
 *
 *  For tight control over page level allocator and protection flags
 *  use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
  return __vmalloc_node_flags(size, NUMA_NO_NODE,
            GFP_KERNEL);
}


static void *__vmalloc_node(unsigned long size, unsigned long align,
          gfp_t gfp_mask, pgprot_t prot,
          int node, const void *caller)
{
  return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
        gfp_mask, prot, 0, node, caller);
}
void *kmap_atomic_prot(struct page *page, pgprot_t prot)
{
  ......
  // 如果是 64 位没有高端地址的,就调用 page_address,里面会调用 lowmem_page_address
// 其实低端内存的映射,会直接使用 __va 进行临时映射
  if (!PageHighMem(page))
    return page_address(page);
  ......
  // 如果是 32 位有高端地址的,就需要调用 set_pte 通过内核页表进行临时映射
  vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
  set_pte(kmap_pte-idx, mk_pte(page, prot));
  ......
  return (void *)vaddr;
}


void *kmap_atomic(struct page *page)
{
  return kmap_atomic_prot(page, kmap_prot);
}


static __always_inline void *lowmem_page_address(const struct page *page)
{
  return page_to_virt(page);
}


#define page_to_virt(x)  __va(PFN_PHYS(page_to_pfn(x)

可以看出,kmap_atomic 和 vmalloc 不同。

kmap_atomic 发现,没有页表的时候,就直接创建页表进行映射了。

而 vmalloc 没有,它只分配了内核的虚拟地址。所以,访问它的时候,会产生缺页异常。

内核态的缺页异常还是会调用 do_page_fault,但是会走到vmalloc_fault。这个函数并不复杂,主要用于关联内核页表项。

/*
 * 32-bit:
 *
 *   Handle a fault on the vmalloc or module mapping area
 */
static noinline int vmalloc_fault(unsigned long address)
{
  unsigned long pgd_paddr;
  pmd_t *pmd_k;
  pte_t *pte_k;


  /* Make sure we are in vmalloc area: */
  if (!(address >= VMALLOC_START && address < VMALLOC_END))
    return -1;


  /*
   * Synchronize this task's top level page-table
   * with the 'reference' page table.
   *
   * Do _not_ use "current" here. We might be inside
   * an interrupt in the middle of a task switch..
   */
  pgd_paddr = read_cr3_pa();
  pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
  if (!pmd_k)
    return -1;


  pte_k = pte_offset_kernel(pmd_k, address);
  if (!pte_present(*pte_k))
    return -1;


  return 0
}
原文地址:https://www.cnblogs.com/sunnycindy/p/14974917.html