【二分图最大点独立集/最小割】P2774 方格取数问题

P2774 方格取数问题

思路

骑士共存问题类似。同样将顶点分为奇数点和偶数点,则可以全部只取奇数点,或全部只取偶数点;若取了一个奇数点((i,j)),则受影响的只有一部分偶数点,即无法取得的与其有公共边的顶点((i-1,j),(i+1,j),(i,j-1),(i,j+1)),而所有奇数点都不受影响;偶数点同理。

由此可以抽象成二分图模型,奇数点为左部点,偶数点为右部点,在互相影响的顶点间连一条有向边。注意必须从右部点出发,连向左部点。如果反过来连会WA(为什么?)。然后问题即求二分图最大独立集=总点权-最大匹配(最小割).

写错一堆细节……

  • 坐标哈希,应该是((x-1)*m+y),不是(x*n+y),也不是((x-1)*n+y)!!
  • 判断点是奇数点还是偶数点,是用(i+j)&1,不是solve(i,j)&1!!
  • 顶点内部连边,只能在连向了汇点的顶点里遍历,不能在被源点连向的顶点里遍历,前者AC,后者全部WA(为什么?)

代码

const int INF = 0x3f3f3f3f;
const int maxn = 6e2 + 100;
const int maxm = 2e4 + 100;
int cnt_e = 1;
int head[maxn];
int n, m;
int s, t;
int cur[maxn], depth[maxn], gap[maxn];
LL Maxflow = 0;

struct Edge {
    int from, to, next;
    LL w;
}e[maxm];
void addn(int& cnt_e, int head[], Edge e[], int u, int v, LL w) {
    //网络流建图
    e[++cnt_e].next = head[u]; e[cnt_e].from = u; e[cnt_e].to = v; e[cnt_e].w = w; head[u] = cnt_e;
    e[++cnt_e].next = head[v]; e[cnt_e].from = v; e[cnt_e].to = u; e[cnt_e].w = 0; head[v] = cnt_e;
}

void bfs() {
    mem(depth, -1);
    mem(gap, 0);
    depth[t] = 0;
    gap[0] = 1;
    cur[t] = head[t];
    queue<int> q;
    q.push(t);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i = head[u]; i; i = e[i].next) {
            int v = e[i].to;
            if (depth[v] != -1) continue;
            q.push(v);
            depth[v] = depth[u] + 1;
            gap[depth[v]]++;
        }
    }
    return;
}

LL dfs(int now, LL minflow,int n) {
    if (now == t) {
        Maxflow += minflow;
        return minflow;
    }
    LL nowflow = 0;
    for (int i = cur[now]; i; i = e[i].next) {
        cur[now] = i;
        int v = e[i].to;
        if (e[i].w && depth[v] + 1 == depth[now]) {
            LL k = dfs(v, min(e[i].w, minflow - nowflow), n);
            if (k) {
                e[i].w -= k;
                e[i ^ 1].w += k;
                nowflow += k;
            }
            if (minflow == nowflow) return nowflow;
        }
    }
    gap[depth[now]]--;
    if (!gap[depth[now]]) depth[s] = n + 1;
    depth[now]++;
    gap[depth[now]]++;
    return nowflow;
}

LL ISAP(int n) {
    Maxflow = 0;
    bfs();
    while (depth[s] < n) {
        memcpy(cur, head, sizeof(head));
        dfs(s, INF, n);
    }
    return Maxflow;
}

int solve(int x, int y) {
    return (x - 1) * m + y;
}

int dirx[] = { 0,0,1,-1 };
int diry[] = { 1,-1,0,0 };

int main() {
    ios::sync_with_stdio(false);
    cin >> n >> m;
    s = n * m + 1;
    t = s + 1;
    LL sum = 0;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            LL val; cin >> val;
            sum += val;
            if ((i + j) & 1) {
                addn(cnt_e, head, e, s, solve(i, j), val);
            }
            else {
                addn(cnt_e, head, e, solve(i, j), t, val);
                for (int k = 0; k < 4; k++) {
                    int nx = i + dirx[k];
                    int ny = j + diry[k];
                    if (nx<1 || ny<1 || nx>n || ny>m) continue;
                    addn(cnt_e, head, e, solve(i, j), solve(nx, ny), INF);
                }
            }
        }
    }
    ISAP(n * m + 2);
    cout << sum - Maxflow;
    
    return 0;
}
原文地址:https://www.cnblogs.com/streamazure/p/14150453.html