强化学习读书笔记

强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

学习笔记:
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016

数学符号看不懂的,先看看这里:

时序差分学习简话

时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想。

时序差分这个词不好理解。改为当时差分学习比较形象一些 - 表示通过当前的差分数据来学习。

蒙特卡洛的方法是模拟(或者经历)一段情节,在情节结束后,根据情节上各个状态的价值,来估计状态价值。
时序差分学习是模拟(或者经历)一段情节,每行动一步(或者几步),根据新状态的价值,然后估计执行前的状态价值。
可以认为蒙特卡洛的方法是最大步数的时序差分学习。
本章只考虑单步的时序差分学习。多步的时序差分学习在下一章讲解。

数学表示
根据我们已经知道的知识:如果可以计算出策略价值((pi)状态价值(v_{pi}(s)),或者行动价值(q_{pi(s, a)})),就可以优化策略。
在蒙特卡洛方法中,计算策略的价值,需要完成一个情节(episode),通过情节的目标价值(G_t)来计算状态的价值。其公式:
Formula MonteCarlo

[V(S_t) gets V(S_t) + alpha delta_t \ delta_t = [G_t - V(S_t)] \ where \ delta_t ext{ - Monte Carlo error} \ alpha ext{ - learning step size} ]

时序差分的思想是通过下一个状态的价值计算状态的价值,形成一个迭代公式(又):
Formula TD(0)

[V(S_t) gets V(S_t) + alpha delta_t \ delta_t = [R_{t+1} + gamma V(S_{t+1} - V(S_t)] \ where \ delta_t ext{ - TD error} \ alpha ext{ - learning step size} \ gamma ext{ - reward discount rate} ]

注:书上提出TD error并不精确,而Monte Carlo error是精确地。需要了解,在此并不拗述。

时序差分学习方法

本章介绍的是时序差分学习的单步学习方法。多步学习方法在下一章介绍。

  • 策略状态价值(v_{pi})的时序差分学习方法(单步多步)
  • 策略行动价值(q_{pi})的on-policy时序差分学习方法: Sarsa(单步多步)
  • 策略行动价值(q_{pi})的off-policy时序差分学习方法: Q-learning(单步)
  • Double Q-learning(单步)
  • 策略行动价值(q_{pi})的off-policy时序差分学习方法(带importance sampling): Sarsa(多步)
  • 策略行动价值(q_{pi})的off-policy时序差分学习方法(不带importance sampling): Tree Backup Algorithm(多步)
  • 策略行动价值(q_{pi})的off-policy时序差分学习方法: (Q(sigma))(多步)

策略状态价值(v_{pi})的时序差分学习方法

单步时序差分学习方法TD(0)

  • 流程图
  • 算法描述

Initialize (V(s)) arbitrarily (forall s in mathcal{S}^+)
Repeat (for each episode):
  Initialize (mathcal{S})
  Repeat (for each step of episode):
   (A gets) action given by (pi) for (S)
   Take action (A), observe (R, S')
   (V(S) gets V(S) + alpha [R + gamma V(S') - V(S)])
   (S gets S')
  Until S is terminal

多步时序差分学习方法

  • 流程图
  • 算法描述

Input: the policy (pi) to be evaluated
Initialize (V(s)) arbitrarily (forall s in mathcal{S})
Parameters: step size (alpha in (0, 1]), a positive integer (n)
All store and access operations (for (S_t) and (R_t)) can take their index mod (n)

Repeat (for each episode):
  Initialize and store (S_0 e terminal)
(T gets infty)
  For (t = 0,1,2,cdots):
   If (t < T), then:
    Take an action according to (pi(dot | S_t))
    Observe and store the next reward as (R_{t+1}) and the next state as (S_{t+1})
    If (S_{t+1}) is terminal, then (T gets t+1)
   $ au gets t - n + 1 $ (( au) is the time whose state's estimate is being updated)
   If ( au ge 0):
    (G gets sum_{i = au + 1}^{min( au + n, T)} gamma^{i- au-1}R_i)
    if ( au + n le T) then: (G gets G + gamma^{n}V(S_{ au + n}) qquad qquad (G_{ au}^{(n)}))
    (V(S_{ au}) gets V(S_{ au}) + alpha [G - V(S_{ au})])
  Until ( au = T - 1)

这里要理解(V(S_0))是由(V(S_0), V(S_1), dots, V(S_n))计算所得;(V(S_1))是由(V(S_1), V(S_1), dots, V(S_{n+1}))

策略行动价值(q_{pi})的on-policy时序差分学习方法: Sarsa

单步时序差分学习方法

  • 流程图
  • 算法描述

Initialize (Q(s, a), forall s in mathcal{S}, a in mathcal{A}(s)) arbitrarily, and (Q(terminal, dot ) = 0)
Repeat (for each episode):
  Initialize (mathcal{S})
  Choose (A) from (S) using policy derived from (Q) (e.g. (epsilon-greedy))
  Repeat (for each step of episode):
   Take action (A), observe (R, S')
   Choose (A') from (S') using policy derived from (Q) (e.g. (epsilon-greedy))
   (Q(S, A) gets Q(S, A) + alpha [R + gamma Q(S', A') - Q(S, A)])
   (S gets S'; A gets A';)
  Until S is terminal

多步时序差分学习方法

  • 流程图
  • 算法描述

Initialize (Q(s, a)) arbitrarily (forall s in mathcal{S}^, forall a in mathcal{A})
Initialize (pi) to be (epsilon)-greedy with respect to Q, or to a fixed given policy
Parameters: step size (alpha in (0, 1]),
  small (epsilon > 0)
  a positive integer (n)
All store and access operations (for (S_t) and (R_t)) can take their index mod (n)

Repeat (for each episode):
  Initialize and store (S_0 e terminal)
  Select and store an action (A_0 sim pi(dot | S_0))
(T gets infty)
  For (t = 0,1,2,cdots):
   If (t < T), then:
    Take an action (A_t)
    Observe and store the next reward as (R_{t+1}) and the next state as (S_{t+1})
    If (S_{t+1}) is terminal, then:
     (T gets t+1)
    Else:
     Select and store an action (A_{t+1} sim pi(dot | S_{t+1}))
   $ au gets t - n + 1 $ (( au) is the time whose state's estimate is being updated)
   If ( au ge 0):
    (G gets sum_{i = au + 1}^{min( au + n, T)} gamma^{i- au-1}R_i)
    if ( au + n le T) then: (G gets G + gamma^{n} Q(S_{ au + n}, A_{ au + n}) qquad qquad (G_{ au}^{(n)}))
    (Q(S_{ au}, A_{ au}) gets Q(S_{ au}, A_{ au}) + alpha [G - Q(S_{ au}, A_{ au})])
    If {pi} is being learned, then ensure that (pi(dot | S_{ au})) is (epsilon)-greedy wrt Q
  Until ( au = T - 1)

策略行动价值(q_{pi})的off-policy时序差分学习方法: Q-learning

Q-learning 算法(Watkins, 1989)是一个突破性的算法。这里利用了这个公式进行off-policy学习。

[Q(S_t, A_t) gets Q(S_t, A_t) + alpha [R_{t+1} + gamma underset{a}{max} Q(S_{t+1}, a) - Q(S_t, A_t)] ]

单步时序差分学习方法

  • 算法描述

Initialize (Q(s, a), forall s in mathcal{S}, a in mathcal{A}(s)) arbitrarily, and (Q(terminal, dot ) = 0)
Repeat (for each episode):
  Initialize (mathcal{S})
  Choose (A) from (S) using policy derived from (Q) (e.g. (epsilon-greedy))
  Repeat (for each step of episode):
   Take action (A), observe (R, S')
   (Q(S, A) gets Q(S, A) + alpha [R + gamma underset{a}{max} Q(S‘, a) - Q(S, A)])
   (S gets S';)
  Until S is terminal

  • Q-learning使用了max,会引起一个最大化偏差(Maximization Bias)问题。
    具体说明,请看书上的Example 6.7。**
    使用Double Q-learning可以消除这个问题。

Double Q-learning

单步时序差分学习方法

Initialize (Q_1(s, a)) and (Q_2(s, a), forall s in mathcal{S}, a in mathcal{A}(s)) arbitrarily
Initialize (Q_1(terminal, dot ) = Q_2(terminal, dot ) = 0)
Repeat (for each episode):
  Initialize (mathcal{S})
  Repeat (for each step of episode):
   Choose (A) from (S) using policy derived from (Q_1) and (Q_2) (e.g. (epsilon-greedy))
   Take action (A), observe (R, S')
   With 0.5 probability:
    (Q_1(S, A) gets Q_1(S, A) + alpha [R + gamma Q_2(S', underset{a}{argmax} Q_1(S', a)) - Q_1(S, A)])
   Else:
    (Q_2(S, A) gets Q_2(S, A) + alpha [R + gamma Q_1(S', underset{a}{argmax} Q_2(S', a)) - Q_2(S, A)])
   (S gets S';)
  Until S is terminal

策略行动价值(q_{pi})的off-policy时序差分学习方法(by importance sampling): Sarsa

考虑到重要样本,把( ho)带入到Sarsa算法中,形成一个off-policy的方法。
( ho) - 重要样本比率(importance sampling ratio)

[ ho gets prod_{i = au + 1}^{min( au + n - 1, T -1 )} frac{pi(A_t|S_t)}{mu(A_t|S_t)} qquad qquad ( ho_{ au+n}^{( au+1)}) ]

多步时序差分学习方法

  • 算法描述

Input: behavior policy mu such that (mu(a|s) > 0,forall s in mathcal{S}, a in mathcal{A})
Initialize (Q(s,a)) arbitrarily (forall s in mathcal{S}^, forall a in mathcal{A})
Initialize (pi) to be (epsilon)-greedy with respect to Q, or to a fixed given policy
Parameters: step size (alpha in (0, 1]),
  small (epsilon > 0)
  a positive integer (n)
All store and access operations (for (S_t) and (R_t)) can take their index mod (n)

Repeat (for each episode):
  Initialize and store (S_0 e terminal)
  Select and store an action (A_0 sim mu(dot | S_0))
(T gets infty)
  For (t = 0,1,2,cdots):
   If (t < T), then:
    Take an action (A_t)
    Observe and store the next reward as (R_{t+1}) and the next state as (S_{t+1})
    If (S_{t+1}) is terminal, then:
     (T gets t+1)
    Else:
     Select and store an action (A_{t+1} sim pi(dot | S_{t+1}))
   $ au gets t - n + 1 $ (( au) is the time whose state's estimate is being updated)
   If ( au ge 0):
    ( ho gets prod_{i = au + 1}^{min( au + n - 1, T -1 )} frac{pi(A_t|S_t)}{mu(A_t|S_t)} qquad qquad ( ho_{ au+n}^{( au+1)}))
    (G gets sum_{i = au + 1}^{min( au + n, T)} gamma^{i- au-1}R_i)
    if ( au + n le T) then: (G gets G + gamma^{n} Q(S_{ au + n}, A_{ au + n}) qquad qquad (G_{ au}^{(n)}))
    (Q(S_{ au}, A_{ au}) gets Q(S_{ au}, A_{ au}) + alpha ho [G - Q(S_{ au}, A_{ au})])
    If {pi} is being learned, then ensure that (pi(dot | S_{ au})) is (epsilon)-greedy wrt Q
  Until ( au = T - 1)

Expected Sarsa

  • 流程图
* 算法描述 略。

策略行动价值(q_{pi})的off-policy时序差分学习方法(不带importance sampling): Tree Backup Algorithm

Tree Backup Algorithm的思想是每步都求行动价值的期望值。
求行动价值的期望值意味着对所有可能的行动(a)都评估一次。

多步时序差分学习方法

  • 流程图
  • 算法描述

Initialize (Q(s,a)) arbitrarily (forall s in mathcal{S}^, forall a in mathcal{A})
Initialize (pi) to be (epsilon)-greedy with respect to Q, or to a fixed given policy
Parameters: step size (alpha in (0, 1]),
  small (epsilon > 0)
  a positive integer (n)
All store and access operations (for (S_t) and (R_t)) can take their index mod (n)

Repeat (for each episode):
  Initialize and store (S_0 e terminal)
  Select and store an action (A_0 sim pi(dot | S_0))
(Q_0 gets Q(S_0, A_0))
(T gets infty)
  For (t = 0,1,2,cdots):
   If (t < T), then:
    Take an action (A_t)
    Observe and store the next reward as (R_{t+1}) and the next state as (S_{t+1})
    If (S_{t+1}) is terminal, then:
     (T gets t+1)
     (delta_t gets R - Q_t)
    Else:
     (delta_t gets R + gamma sum_a pi(a|S_{t+1})Q(S_{t+1},a) - Q_t)
     Select arbitrarily and store an action as (A_{t+1})
     (Q_{t+1} gets Q(S_{t+1},A_{t+1}))
     (pi_{t+1} gets pi(S_{t+1},A_{t+1}))
   $ au gets t - n + 1 $ (( au) is the time whose state's estimate is being updated)
   If ( au ge 0):
    (E gets 1)
    (G gets Q_{ au})
    For (k= au, dots, min( au + n - 1, T - 1):)
     (G gets G + E delta_k)
     (E gets gamma E pi_{k+1})
    (Q(S_{ au}, A_{ au}) gets Q(S_{ au}, A_{ au}) + alpha [G - Q(S_{ au}, A_{ au})])
    If {pi} is being learned, then ensure that (pi(a | S_{ au})) is (epsilon)-greedy wrt (Q(S_{ au},dot ))
  Until ( au = T - 1)

策略行动价值(q_{pi})的off-policy时序差分学习方法: (Q(sigma))

(Q(sigma))结合了Sarsa(importance sampling), Expected Sarsa, Tree Backup算法,并考虑了重要样本。
(sigma = 1)时,使用了重要样本的Sarsa算法。
(sigma = 0)时,使用了Tree Backup的行动期望值算法。

多步时序差分学习方法

  • 流程图
  • 算法描述

Input: behavior policy mu such that (mu(a|s) > 0,forall s in mathcal{S}, a in mathcal{A})
Initialize (Q(s,a)) arbitrarily forall s in mathcal{S}^, forall a in mathcal{A}$
Initialize (pi) to be (epsilon)-greedy with respect to Q, or to a fixed given policy
Parameters: step size (alpha in (0, 1]),
  small (epsilon > 0)
  a positive integer (n)
All store and access operations (for (S_t) and (R_t)) can take their index mod (n)

Repeat (for each episode):
  Initialize and store (S_0 e terminal)
  Select and store an action (A_0 sim mu(dot | S_0))
(Q_0 gets Q(S_0, A_0))
(T gets infty)
  For (t = 0,1,2,cdots):
   If (t < T), then:
    Take an action (A_t)
    Observe and store the next reward as (R_{t+1}) and the next state as (S_{t+1})
    If (S_{t+1}) is terminal, then:
     (T gets t+1)
     (delta_t gets R - Q_t)
    Else:
     Select and store an action as (A_{t+1} sim mu(dot |S_{t+1}))
     Select and store (sigma_{t+1}))
     (Q_{t+1} gets Q(S_{t+1},A_{t+1}))
     (delta_t gets R + gamma sigma_{t+1} Q_{t+1} + gamma (1 - sigma_{t+1})sum_a pi(a|S_{t+1})Q(S_{t+1},a) - Q_t)
     (pi_{t+1} gets pi(S_{t+1},A_{t+1}))
     ( ho_{t+1} gets frac{pi(A_{t+1}|S_{t+1})}{mu(A_{t+1}|S_{t+1})})
   $ au gets t - n + 1 $ (( au) is the time whose state's estimate is being updated)
   If ( au ge 0):
    ( ho gets 1)
    (E gets 1)
    (G gets Q_{ au})
    For (k= au, dots, min( au + n - 1, T - 1):)
     (G gets G + E delta_k)
     (E gets gamma E [(1 - sigma_{k+1})pi_{k+1} + sigma_{k+1}])
     ( ho gets ho(1 - sigma_{k} + sigma_{k} au_{k}))
    (Q(S_{ au}, A_{ au}) gets Q(S_{ au}, A_{ au}) + alpha ho [G - Q(S_{ au}, A_{ au})])
    If ({pi}) is being learned, then ensure that (pi(a | S_{ au})) is (epsilon)-greedy wrt (Q(S_{ au},dot ))
  Until ( au = T - 1)

总结

时序差分学习方法的限制:学习步数内,可获得奖赏信息。
比如,国际象棋的每一步,是否可以计算出一个奖赏信息?如果使用蒙特卡洛方法,模拟到游戏结束,肯定是可以获得一个奖赏结果的。

参照

原文地址:https://www.cnblogs.com/steven-yang/p/6516818.html