【模板】【洛谷P5487】—Berlekamp-Massey算法

传送门

可以用来求解数列的最短常系数线性递推式
即一个长度为mm的数列rr满足对于i[m+1,n]iin[m+1,n]
满足Ai=j=1mAijrjA_i=sum_{j=1}^{m}A_{i-j}r_j

BMBM算法复杂度是O(n2)O(n^2)


首先有个东西叫做常系数齐次线性递推
就是对于一个长度为kk的递推式
可以在O(klognlogk)O(klognlogk)的时间求出第nn

传送门


首先定义r[i]r[i]为第ii次修改的递推式

当对于最新的一个ii不满足j=1mAijrjsum_{j=1}^{m}A_{i-j}r_j
就会对递推式修改

定义fail[i]fail[i]表示第ii次修改
del[i]del[i]表示第ii次修改前a[fail[i]]a[fail[i]]和用当时的递推式算出来的值之差

考虑当在ii出错时,设修改次数为cntcnt
考虑对r[cnt]r[cnt]修改为r[cnt+1]r[cnt+1],使其对ii同样成立

如果当cnt=0cnt=0,直接填入ii00,这样就相当于作为定义式,不用考虑当前这个了

否则设mul=del[i]del[fail[cnt1]]mul=frac{del[i]}{del[fail[cnt-1]]}

我们只需要求出一个r=r'={r1,r2,r3rmr_1,r_2,r_3……r_{m'}}$
使其满足i[m+1,i1]del[i]=0forall iin[m'+1,i-1] ,del[i]=0

并且j=1mAijrj=del[i]sum_{j=1}^{m'}A_{i-j}r'_{j}=del[i]

然后只需要rcnt+1=rcnt+rr_{cnt+1}=r_{cnt}+r'即可

我们发现只需要令r=r'={0,0,0,mul,mulrcnt10,0,……0,mul,-mul*r_{cnt-1}}
ifailcnt11i-fail_{cnt-1}-1个0,一个mulmul,再把rcnt1r_{cnt-1}乘上mul-mul接在后面(注意是-的)

可以发现这样是满足的(可以手推一下,不想具体写了)

这样最坏情况每次都会修改一次rr,修改O(n)O(n)
复杂度就是O(n2)O(n^2)

代码:

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0,f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define poly vector<int>
#define bg begin
cs int mod=998244353,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(ll &a,ll b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=(1<<16)|7,C=16;
poly w[C+1];
inline void init_w(){
	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
	int wn=ksm(G,(mod-1)/(1<<C));
	w[C][0]=1;
	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
	for(int i=C-1;i;i--)
	for(int j=0;j<(1<<(i-1));j++)
	w[i][j]=w[i+1][j<<1];
}
int rev[N<<2];
inline void init_rev(int lim){
	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
}
inline void ntt(poly &f,int lim,int kd){
	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
	for(int mid=1,l=1;mid<lim;mid<<=1,l++)
	for(int i=0;i<lim;i+=(mid<<1))
		for(int j=0,a0,a1;j<mid;j++)
			a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]),
			f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
	if(kd==-1&&(reverse(f.bg()+1,f.bg()+lim),1))
		for(int inv=ksm(lim,mod-2),i=0;i<lim;i++)Mul(f[i],inv);
}
inline poly operator +(poly a,poly b){
	poly c;int lim=max(a.size(),b.size());c.resize(lim);
	a.resize(lim),b.resize(lim);
	for(int i=0;i<lim;i++)c[i]=add(a[i],b[i]);return c;
}
inline poly operator -(poly a,poly b){
	poly c;int lim=max(a.size(),b.size());c.resize(lim);
	a.resize(lim),b.resize(lim);
	for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
}
inline poly operator *(poly a,int b){
	for(int i=0;i<a.size();i++)Mul(a[i],b);return a;
}
inline poly operator /(poly a,int b){
	for(int i=0,inv=ksm(b,mod-2);i<a.size();i++)Mul(a[i],inv);
	return a;
}
inline poly operator *(poly a,poly b){
	int deg=a.size()+b.size()-1,lim=1;
	if(deg<=128){
		poly c(deg,0);
		for(int i=0;i<a.size();i++)
		for(int j=0;j<b.size();j++)
			Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	while(lim<deg)lim<<=1;init_rev(lim);
	a.resize(lim),ntt(a,lim,1);
	b.resize(lim),ntt(b,lim,1);
	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
	ntt(a,lim,-1),a.resize(deg);
	return a;
}
inline poly Inv(poly a,int deg){
	poly c,b(1,ksm(a[0],mod-2));
	for(int lim=4;lim<(deg<<2);lim<<=1){
		init_rev(lim);
		c=a,c.resize(lim>>1);
		c.resize(lim),ntt(c,lim,1);
		b.resize(lim),ntt(b,lim,1);
		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
		ntt(b,lim,-1),b.resize(lim>>1);
	}b.resize(deg);return b;
}
inline poly operator /(poly a,poly b){
	int lim=1,deg=(int)a.size()-(int)b.size()+1;
	reverse(a.bg(),a.end());
	reverse(b.bg(),b.end());
	while(lim<=deg)lim<<=1;
	b=Inv(b,lim),b.resize(deg);
	a=a*b,a.resize(deg);
	reverse(a.bg(),a.end());
	return a;
}
inline poly operator %(poly a,poly b){
	int deg=(int)a.size()-(int)b.size()+1;
	if(deg<0)return a;
	poly c=a-(a/b)*b;
	c.resize(b.size()-1);
	return c;
}
inline poly ksm(poly a,int b,poly res,cs poly &mod){
	for(;b;b>>=1,a=a*a%mod)if(b&1)res=res*a%mod;
	return res;
}
namespace Cayley_Hamilton{
	int n;
	inline int solve(poly coef,int *a,ll k){
		n=coef.size(),init_w();
		poly f(n),g(2),res(1,0);g[1]=res[0]=1;
		for(int i=1; i<n;i++)f[n-i-1]=dec(0,coef[i]);
		f[n-1]=1;
		res=ksm(g,k,res,f);
		int anc=0;
		for(int i=0;i<res.size();i++)Add(anc,mul(res[i],a[i+1]));
		return anc;
	}
}
namespace Berlekamp_Massey{
	poly r[N];
	int n,cnt,m,a[N],fail[N],del[N];
	inline void update(int i){
		++cnt;
		int MUL=mul(dec(a[i],del[i]),ksm(dec(a[fail[cnt-2]],del[fail[cnt-2]]),mod-2));
		r[cnt].resize(i-fail[cnt-2],0);
		r[cnt].pb(MUL);
		for(int j=1;j<r[cnt-2].size();j++){
			r[cnt].pb(mul(mod-r[cnt-2][j],MUL));
		}
		r[cnt]=r[cnt]+r[cnt-1];
	}
	inline void BM(){
		for(int i=1;i<=n;i++){
			for(int j=1;j<r[cnt].size();j++){
				Add(del[i],mul(a[i-j],r[cnt][j]));
			}
			if(a[i]!=del[i]){
				fail[cnt]=i;
				if(!cnt)r[++cnt].resize(i+1);
				else update(i);
			}
		}
	}
	inline void solve(){
		n=read(),m=read();
		for(int i=1;i<=n;i++)
		a[i]=read();
		BM();
		for(int i=1;i<r[cnt].size();i++)
		cout<<r[cnt][i]<<" ";puts("");
		cout<<Cayley_Hamilton::solve(r[cnt],a,m)<<'
';
	}
}
int main(){
	Berlekamp_Massey::solve();
}

例题:

【HDU6172】

【Codechef walk on tree】

原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328671.html