Spark分区

转载自:https://www.cnblogs.com/qingyunzong/p/8987065.html

一:分区的概念

分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区。

分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务task中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。

二:分区的目的

数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件,从而减少网络传输,但是增加了cpu的计算负载。

(一)Spark里面io也是不可避免的,同Hadoop在网络传输spark里面进行了优化

Spark把rdd进行分区(分片),放在集群上并行计算。同一个rdd分片100个,10个节点,平均一个节点10个分区,当进行sum型的计算的时候,先进行每个分区的sum,然后把sum值shuffle传输到主程序进行全局sum,所以进行sum型计算对网络传输非常小。但对于进行join型的计算的时候,需要把数据本身进行shuffle,网络开销很大。

(二)我们进行mapreduce计算的时候为什么要进行shuffle?《重点》对比理解shuffle

就是说mapreduce里面网络传输主要在shuffle阶段,shuffle的根本原因是相同的key存在不同的节点上,按key进行聚合的时候不得不进行shuffle。shuffle是非常影响网络的,它要把所有的数据混在一起走网络,然后它才能把相同的key走到一起。进行shuffle是存储决定的。

(三)spark独有特点---优化改进

Spark把key-value类型的RDD,通过key的hashcode进行分区,而且保证相同的key存储在同一个节点上。这样对改rdd进行key聚合时,就不需要shuffle过程。

Spark为了改进mapreduce的shuffle机制,spark会把key进行分区,也就是key的hashcode进行分区,相同的key,hashcode肯定是一样的,所以它进行分区的时候100t的数据分成10分,每部分10个t,它能确保相同的key肯定在一个分区里面,而且它能保证存储的时候相同的key能够存在同一个节点上。比如一个rdd分成了100份,集群有10个节点,所以每个节点存10份,每一分称为每个分区,spark能保证相同的key存在同一个节点上,实际上相同的key存在同一个分区。

key的分布不均决定了有的分区大有的分区小。没法分区保证完全相等,但它会保证在一个接近的范围。所以mapreduce里面做的某些工作里边,spark就不需要shuffle了,spark解决网络传输这块的根本原理就是这个。

(四)spark多表分区

进行join的时候是两个表,不可能把两个表都分区好,通常情况下是把用的频繁的大表事先进行分区,小表进行关联它的时候小表进行shuffle过程。----大表不需要shuffle。

需要在工作节点间进行数据混洗的转换极大地受益于分区。这样的转换是 cogroup,groupWith,join,leftOuterJoin,rightOuterJoin,groupByKey,reduceByKey,combineByKey 和lookup。

分区是可配置的,只要RDD是基于键值对的即可

三:Spark分区原则及方法

RDD分区的一个分区原则:尽可能是得分区的个数等于集群核心数目

无论是本地模式、Standalone模式、YARN模式或Mesos模式,我们都可以通过spark.default.parallelism来配置其默认分区个数若没有设置该值,则根据不同的集群环境确定该值

(一)本地模式

1.默认方式---就一个分区

  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val array = Array(1,2,3)
    val arrayRDD:RDD[Int] = sc.parallelize(array)  //默认是一个分区
    val numPartitions = arrayRDD.getNumPartitions
    println(numPartitions)
  }

2.手动设置分区数

  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val array = Array(1,2,3)
    val arrayRDD:RDD[Int] = sc.parallelize(array, numSlices=2)
    val numPartitions = arrayRDD.getNumPartitions
    println(numPartitions)
  }

3.local[n]---n等于几默认就是几个分区,如果n=* 那么分区个数就等于cpu core的个数

  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local[3]")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val array = Array(1,2,3)
    val arrayRDD:RDD[Int] = sc.parallelize(array)
    val numPartitions = arrayRDD.getNumPartitions
    println(numPartitions)
  }

conf.setAppName("WordCount").setMaster("local[*]")

4.参数控制

  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local")
    conf.set("spark.default.parallelism","5")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val array = Array(1,2,3)
    val arrayRDD:RDD[Int] = sc.parallelize(array)
    val numPartitions = arrayRDD.getNumPartitions
    println(numPartitions)
  }

(二)其他模式

 1.yarn模式

最大分区数:所有执行节点上的核心总数或2个,以较大的为准

2.Mesos细粒度模式

最大分区数:8 

四:分区器

(一)设置分区器的场景

1.如果是从HDFS里面读取出来的数据,不需要分区器。因为HDFS本来就分好区了

    分区数我们是可以控制的,但是没必要有分区器

2.非key-value RDD分区没必要设置分区器。但是也可以设置

  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local")
    conf.set("spark.default.parallelism","5")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val testRDD = sc.textFile("E:\1_a1.txt").flatMap(line => line.split(",")).map(word => (word, 1)).partitionBy(new HashPartitioner(2))
  }

3.Key-value形式的时候,我们就有必要了。

(二)分区器---HashPartitioner (默认)

val resultRDD = testRDD.reduceByKey(new HashPartitioner(2),(x:Int,y:Int) => x+ y)
//如果不设置默认也是HashPartitoiner,分区数跟spark.default.parallelism一样
println(resultRDD.partitioner)
println("resultRDD"+resultRDD.getNumPartitions)

(三)分区器---RangePartitioner

val newresultRDD=resultRDD.partitionBy(new RangePartitioner[String,Int](3,resultRDD))  //String,Int是将要进行分区的resultRDD的键值对类型。(3,redultRDD)中3是分区数,resultRDD是要进行分区的RDD。详细见下面

SparkCore中除了HashPartitioner分区器外,另外一个比较重要的已经实现的分区器,主要用于RDD的数据排序相关API中,比如sortByKey底层使用的数据分区器就是RangePartitioner分区器。

该分区器的实现方式主要是通过两个步骤来实现的:

第一步:先重整个RDD中抽取出样本数据,将样本数据排序,计算出每个分区的最大key值,形成一个Array[KEY]类型的数组变量rangeBounds;

第二步:判断key在rangeBounds中所处的范围,给出该key值在下一个RDD中的分区id下标;

该分区器要求RDD中的KEY类型必须是可以排序的,

class RangePartitioner[K: Ordering : ClassTag, V](
                                                   partitions: Int,
                                                   rdd: RDD[_ <: Product2[K, V]],
                                                   private var ascending: Boolean = true)
  extends Partitioner {

  // We allow partitions = 0, which happens when sorting an empty RDD under the default settings.
  require(partitions >= 0, s"Number of partitions cannot be negative but found $partitions.")

  // 获取RDD中key类型数据的排序器
  private var ordering = implicitly[Ordering[K]]

  // An array of upper bounds for the first (partitions - 1) partitions
  private var rangeBounds: Array[K] = {
    if (partitions <= 1) {
      // 如果给定的分区数是一个的情况下,直接返回一个空的集合,表示数据不进行分区
      Array.empty
    } else {
      // This is the sample size we need to have roughly balanced output partitions, capped at 1M.
      // 给定总的数据抽样大小,最多1M的数据量(10^6),最少20倍的RDD分区数量,也就是每个RDD分区至少抽取20条数据
      val sampleSize = math.min(20.0 * partitions, 1e6)
      // Assume the input partitions are roughly balanced and over-sample a little bit.
      // 计算每个分区抽取的数据量大小, 假设输入数据每个分区分布的比较均匀
      // 对于超大数据集(分区数超过5万的)乘以3会让数据稍微增大一点,对于分区数低于5万的数据集,每个分区抽取数据量为60条也不算多
      val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.size).toInt
      // 从rdd中抽取数据,返回值:(总rdd数据量, Array[分区id,当前分区的数据量,当前分区抽取的数据])
      val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
      if (numItems == 0L) {
        // 如果总的数据量为0(RDD为空),那么直接返回一个空的数组
        Array.empty
      } else {
        // If a partition contains much more than the average number of items, we re-sample from it
        // to ensure that enough items are collected from that partition.
        // 计算总样本数量和总记录数的占比,占比最大为1.0
        val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
        // 保存样本数据的集合buffer
        val candidates = ArrayBuffer.empty[(K, Float)]
        // 保存数据分布不均衡的分区id(数据量超过fraction比率的分区)
        val imbalancedPartitions = mutable.Set.empty[Int]
        // 计算抽取出来的样本数据
        sketched.foreach { case (idx, n, sample) =>
          if (fraction * n > sampleSizePerPartition) {
            // 如果fraction乘以当前分区中的数据量大于之前计算的每个分区的抽象数据大小,那么表示当前分区抽取的数据太少了,该分区数据分布不均衡,需要重新抽取
            imbalancedPartitions += idx
          } else {
            // 当前分区不属于数据分布不均衡的分区,计算占比权重,并添加到candidates集合中
            // The weight is 1 over the sampling probability.
            val weight = (n.toDouble / sample.size).toFloat
            for (key <- sample) {
              candidates += ((key, weight))
            }
          }
        }

        // 对于数据分布不均衡的RDD分区,重新进行数据抽样
        if (imbalancedPartitions.nonEmpty) {
          // Re-sample imbalanced partitions with the desired sampling probability.
          // 获取数据分布不均衡的RDD分区,并构成RDD
          val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
          // 随机种子
          val seed = byteswap32(-rdd.id - 1)
          // 利用rdd的sample抽样函数API进行数据抽样
          val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
          val weight = (1.0 / fraction).toFloat
          candidates ++= reSampled.map(x => (x, weight))
        }

        // 将最终的抽样数据计算出rangeBounds出来
        RangePartitioner.determineBounds(candidates, partitions)
      }
    }
  }

  // 下一个RDD的分区数量是rangeBounds数组中元素数量+ 1个
  def numPartitions: Int = rangeBounds.length + 1

  // 二分查找器,内部使用java中的Arrays类提供的二分查找方法
  private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]

  // 根据RDD的key值返回对应的分区id。从0开始
  def getPartition(key: Any): Int = {
    // 强制转换key类型为RDD中原本的数据类型
    val k = key.asInstanceOf[K]
    var partition = 0
    if (rangeBounds.length <= 128) {
      // If we have less than 128 partitions naive search
      // 如果分区数据小于等于128个,那么直接本地循环寻找当前k所属的分区下标
      while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
        partition += 1
      }
    } else {
      // Determine which binary search method to use only once.
      // 如果分区数量大于128个,那么使用二分查找方法寻找对应k所属的下标;
      // 但是如果k在rangeBounds中没有出现,实质上返回的是一个负数(范围)或者是一个超过rangeBounds大小的数(最后一个分区,比所有数据都大)
      partition = binarySearch(rangeBounds, k)
      // binarySearch either returns the match location or -[insertion point]-1
      if (partition < 0) {
        partition = -partition - 1
      }
      if (partition > rangeBounds.length) {
        partition = rangeBounds.length
      }
    }

    // 根据数据排序是升序还是降序进行数据的排列,默认为升序
    if (ascending) {
      partition
    } else {
      rangeBounds.length - partition
    }
  }

按照范围进行分区的,如果是字符串,那么就按字典顺序的范围划分。如果是数字,就按数据自的范围划分

def determineBounds[K: Ordering : ClassTag](
                                               candidates: ArrayBuffer[(K, Float)],
                                               partitions: Int): Array[K] = {
    val ordering = implicitly[Ordering[K]]
    // 按照数据进行数据排序,默认升序排列
    val ordered = candidates.sortBy(_._1)
    // 获取总的样本数量大小
    val numCandidates = ordered.size
    // 计算总的权重大小
    val sumWeights = ordered.map(_._2.toDouble).sum
    // 计算步长
    val step = sumWeights / partitions
    var cumWeight = 0.0
    var target = step
    val bounds = ArrayBuffer.empty[K]
    var i = 0
    var j = 0
    var previousBound = Option.empty[K]
    while ((i < numCandidates) && (j < partitions - 1)) {
      // 获取排序后的第i个数据及权重
      val (key, weight) = ordered(i)
      // 累计权重
      cumWeight += weight
      if (cumWeight >= target) {
        // Skip duplicate values.
        // 权重已经达到一个步长的范围,计算出一个分区id的值
        if (previousBound.isEmpty || ordering.gt(key, previousBound.get)) {
          // 上一个边界值为空,或者当前边界key数据大于上一个边界的值,那么当前key有效,进行计算
          // 添加当前key到边界集合中
          bounds += key
          // 累计target步长界限
          target += step
          // 分区数量加1
          j += 1
          // 上一个边界的值重置为当前边界的值
          previousBound = Some(key)
        }
      }
      i += 1
    }
    // 返回结果
    bounds.toArray
  }
RangePartitioner的determineBounds函数的作用是根据样本数据记忆权重大小确定数据边界

补充:RangePartitioner分区执行原理概述

1.计算总体的数据抽样大小sampleSize,计算规则是:至少每个分区抽取20个数据或者最多1e6的样本的数据量。

2.根据sampleSize和分区数量计算每个分区的数据抽样样本数量最大值sampleSizePrePartition。

3.根据以上两个值进行水塘抽样,返回RDD的总数据量,分区中总元素的个数和每个分区的采样数据。

4.计算出数据量较大的分区通过RDD.sample进行重新抽样。

5.通过抽样数组 candidates: ArrayBuffer[(K, wiegth)]计算出分区边界的数组BoundsArray

6.在取数据时,如果分区数小于128则直接获取,如果大于128则通过二分法,获取当前Key属于那个区间,返回对应的BoundsArray下标即为partitionsID。

补充:https://www.zhihu.com/question/34672009

(四)两种分区器的区别 

1.HashPartitioner分区可能HashPartitioner导致每个分区中数据量的不均匀。

2.RangePartitioner分区尽量保证每个分区中数据量的均匀,将一定范围内的数映射到某一个分区内。分区与分区之间数据是有序的,但分区内的元素是不能保证顺序的。

五:自定义分区器

package com.dt.spark

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.HashPartitioner
import org.apache.spark.Partitioner
import java.net.URL
import org.apache.spark.RangePartitioner

class MyPartitioner(val numParts:Int) extends Partitioner{
  def numPartitions: Int = numParts  //设置分区数
  def getPartition(key: Any): Int = {  //返回分区号
    val domain = new URL(key.toString()).getHost
    val code = (domain.hashCode()%numParts)
    if(code<0){
      code+numParts
    }else{
      code
    }
  }
}

object WordCount {
  def main(args:Array[String]):Unit={
    val conf = new SparkConf()
    //设置运行模式为本地运行,不然默认是集群模式
    //conf.setMaster("local")  //默认是集群模式
    //设置任务名
    conf.setAppName("WordCount").setMaster("local")
    conf.set("spark.default.parallelism","5")
    //设置SparkContext,是SparkCore的程序入口
    val sc = new SparkContext(conf)
    
    val urlRDD = sc.makeRDD(Seq(("http://baidu.com/test", 2),("http://baidu.com/index", 2),("http://ali.com", 3), ("http://baidu.com/tmmmm", 4),("http://baidu.com/test", 4)))
    
    val newresultRDD = urlRDD.partitionBy(new RangePartitioner(2,urlRDD))
    
    val hashPartitionedRDD = urlRDD.partitionBy(new HashPartitioner(2))  //hashPartition
    val res = hashPartitionedRDD.glom().collect()
    
    val partitionedRDD = urlRDD.partitionBy(new MyPartitioner(2))  //使用自定义partition
    val array = partitionedRDD.glom().collect()
    println(array)
  }
}
原文地址:https://www.cnblogs.com/ssyfj/p/12615298.html