支持向量机SVM推导

样本((x_{i}),(y_{i}))个数为(m):

[{x_{1},x_{2},x_{3}...x_{m}} ]

[{y_{1},y_{2},y_{3}...y_{m}} ]

其中(x_{i})为(n)维向量:

[x_{i}={x_{i1},x_{i2},x_{i3}...x_{in}} ]

其中(y_i)为类别标签:

[y_{i}in{-1,1} ]

其中(w)为(n)维向量:

[w={w_{1},w_{2},w_{3}...w_{n}} ]

函数间隔(r_{fi}):

[r_{fi}=y_i(wx_i+b) ]

几何间隔(r_{di}):

[r_{di}=frac{r_{fi}}{left | w ight |} =frac{y_i(wx_i+b)}{left | w ight |} ]

最小函数间隔(r_{fmin}):

[r_{fmin}=underset{i}{min}{y_i(wx_i+b)} ]

最小几何间隔(r_{dmin}):

[r_{dmin}=frac{r_{fmin}}{left | w ight |} =frac{1}{left | w ight |}*underset{i}{min}{y_i(wx_i+b)} ]

目标是最大化最小几何间隔(r_{dmin}):

[max{r_{dmin}}= underset{w,b}{max}{frac{1}{left | w ight |}*underset{i}{min}{y_i(wx_i+b)}} ]

最小几何间隔的特点:等比例的缩放(w,b),最小几何间隔(r_{dmin})的值不变。
因此可以通过等比例的缩放(w,b),使得最小函数间隔(r_{fmin})=1,即:

[underset{i}{min}{y_i(wx_i+b)}=1 ]

此时会产生一个约束条件:

[y_i(wx_i+b)geq 1 ]

最终优化目标为:

[left{egin{matrix} underset{w,b}{max}frac{1}{left | w ight |} \ y_i(wx_i+b)geq 1 end{matrix} ight. = left{egin{matrix} underset{w,b}{min}frac{1}{2}{left | w ight |}^2 \ y_i(wx_i+b)geq 1 end{matrix} ight. ]

原文地址:https://www.cnblogs.com/smallredness/p/11059901.html