多线程内存问题分析之mprotect方法【转】

转自:https://blog.csdn.net/agwtpcbox/article/details/53230664

http://www.yebangyu.org/blog/2016/02/01/detectmemoryghostinmultithread/

多线程中的内存问题,一直被认为是噩梦般的存在,几乎只有高手、大仙才能解决。除了大量的打log、gdb调试、code review以及依靠多年的经验和直觉之外,有没有一些分析的手段和工具呢?答案是肯定的。本文首先介绍其中的一种:mprotect大法。通过mprotect,保护特定的感兴趣的内存,当有线程改写该区域时,会产生一个中断,我们在中断处理函数中把调用栈等信息打印出来。这是大概的思路,不过其中的问题很多,我们慢慢道来。

原理

mprotect函数

mprotect函数的原型如下:

int mprotect(const void *addr, size_t len, int prot);

其中addr是待保护的内存首地址,必须按页对齐;len是待保护内存的大小,必须是页的整数倍,prot代表模式,可能的取值有PROT_READ(表示可读)、PROT_WRITE(可写)等。

不同体系结构和操作系统,一页的大小不尽相同。如何获得页大小呢?通过PAGE_SIZE宏或者getpagesize()系统调用即可。

定制中断处理函数

当线程试图对我们已保护(成只读)的内存进行篡改时,默认情况下程序会收到SIGSEGV错误而退出。能不能不退出并且把相应的调用栈打印出来分析?当然可以。通过如下代码注册你定制的中断处理函数即可:

  1.  
    struct sigaction act;
  2.  
    act.sa_sigaction = your_handler;
  3.  
    sigemptyset(&act.sa_mask);
  4.  
    act.sa_flags = SA_SIGINFO;
  5.  
    if(sigaction(SIGSEGV, &act, NULL) == -1) {
  6.  
    perror("Register hanlder failed");
  7.  
    exit(EXIT_FAILURE);
  8.  
    }

这样,控制流就会到达你编写的your_handler函数上。而your_handler的函数原型是:

void your_handler(int sig, siginfo_t *si, void *unused);

编写your_handler函数即可?是的,不过这里面有两个注意事项:

1,中断处理函数里不应该调用内存分配函数,否则可能会引起double fault。因此,不适合调用backtrace_symbols(内部会动态分配内存),而是通过backtrace_symbols_fd直接将调用栈信息直接刷到文件中。

2,中断处理函数中应该恢复被保护内存为可写,否则会引起死循环。(再次中断并进入咱们编写的函数)

封装

为了方便使用,我封装了一个类,供参考:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  1.  
    #include <fcntl.h>
  2.  
    #include <signal.h>
  3.  
    #include <stdio.h>
  4.  
    #include <stdlib.h>
  5.  
    #include <string.h>
  6.  
    #include <stdint.h>
  7.  
    #include <sys/mman.h>
  8.  
    #include <sys/stat.h>
  9.  
    #include <unistd.h>
  10.  
    #include <sys/user.h>
  11.  
    #include <execinfo.h>
  12.  
    class MemoryDetector
  13.  
    {
  14.  
    public:
  15.  
    typedef void (*segv_handler) (int sig, siginfo_t *si, void *unused);
  16.  
    static void init(const char *path)
  17.  
    {
  18.  
    register_handler(handler);
  19.  
    fd_ open(pathO_RDWR|O_CREAT777);
  20.  
    }
  21.  
    static int protect(void *p, int len)
  22.  
    {
  23.  
    address_ reinterpret_cast<uint64_t>(p);
  24.  
    len_ len;
  25.  
    uint64_t start_address (address_ >> PAGE_SHIFT<< PAGE_SHIFT;
  26.  
    return mprotect(reinterpret_cast<void *>(start_address), PAGE_SIZEPROT_READ);
  27.  
    }
  28.  
    static int umprotect(void *p, int len)
  29.  
    {
  30.  
    uint64_t tmp_address_ reinterpret_cast<uint64_t>(p);
  31.  
    uint64_t start_address (tmp_address_ >> PAGE_SHIFT<< PAGE_SHIFT;
  32.  
    return mprotect(reinterpret_cast<void *>(start_address), PAGE_SIZEPROT_READ PROT_WRITE);
  33.  
    }
  34.  
    static int umprotect()
  35.  
    {
  36.  
    uint64_t start_address (address_ >> PAGE_SHIFT<< PAGE_SHIFT;
  37.  
    return mprotect(reinterpret_cast<void *>(start_address), PAGE_SIZEPROT_READ PROT_WRITE);
  38.  
    }
  39.  
    static void finish()
  40.  
    {
  41.  
    close(fd_);
  42.  
    }
  43.  
    private:
  44.  
    static void register_handler(segv_handler sh)
  45.  
    {
  46.  
    struct sigaction act;
  47.  
    act.sa_sigaction sh;
  48.  
    sigemptyset(&act.sa_mask);
  49.  
    act.sa_flags SA_SIGINFO;
  50.  
    if(sigaction(SIGSEGV&actNULL== -1){
  51.  
    perror("Register hanlder failed");
  52.  
    exit(EXIT_FAILURE);
  53.  
    }
  54.  
    }
  55.  
    static void handler(int sig, siginfo_t *si, void *unused)
  56.  
    {
  57.  
    uint64_t address reinterpret_cast<uint64_t>(si->si_addr);
  58.  
    if (address >= address_ && address address_ len_{
  59.  
    umprotect(si->si_addrPAGE_SIZE);
  60.  
    my_backtrace();
  61.  
    }
  62.  
    }
  63.  
    static void my_backtrace()
  64.  
    {
  65.  
    const int 100;
  66.  
    voidarray[100];
  67.  
    size_t size backtrace(arrayN);
  68.  
    backtrace_symbols_fd(arraysizefd_);
  69.  
    }
  70.  
    static uint64_t address_;
  71.  
    static int len_;
  72.  
    static int fd_;
  73.  
    };
  74.  
     

这个封装还存在一些问题,比如缺少错误处理,待保护内存必须在一页内等。读者诸君可以根据需要自行完善。

实战

来个例子,实战一下吧

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
  1.  
    #include "test.h" //就是上面封装的MemoryDetector类
  2.  
    #include <thread>
  3.  
    using namespace std;
  4.  
    uint64_t MemoryDetector::address_ 0;
  5.  
    int MemoryDetector::len_ 0;
  6.  
    int MemoryDetector::fd_ 0;
  7.  
    ///////////////////////////////////////
  8.  
    int *NULL;
  9.  
    void g()
  10.  
    {
  11.  
    usleep(2000000);
  12.  
    char *reinterpret_cast<char *>(p);
  13.  
    *(q+2111;//非法篡改!!!
  14.  
    }
  15.  
    void f()
  16.  
    {
  17.  
    new int(1);
  18.  
    MemoryDetector::protect(p4);
  19.  
    }
  20.  
    int main()
  21.  
    {
  22.  
    const char *path "result.tmp";//调用栈信息存放路径
  23.  
    MemoryDetector::init(path);
  24.  
    std::thread t1(f);
  25.  
    std::thread t2(g);
  26.  
    t1.join();
  27.  
    t2.join();
  28.  
    MemoryDetector::finish();
  29.  
    return 0;
  30.  
    }
  31.  
     

用如下方式编译链接以上程序:

g++ -g -rdynamic -std=c++11 -pthread  test.cpp -o test

程序运行结束后,打开result.tmp文件,看到如下内容:

  1.  
    ./test(_ZN14MemoryDetector12my_backtraceEv+0x26)[0x405ce8]
  2.  
    ./test(_ZN14MemoryDetector7handlerEiP7siginfoPv+0x60)[0x405cc0]
  3.  
    /lib64/libpthread.so.0[0x339a80f500]
  4.  
    ./test(_Z1gv+0x25)[0x405909]
  5.  
    ./test(_ZNSt6thread5_ImplIPFvvEE6_M_runEv+0x16)[0x406e2c]
  6.  
    /usr/lib64/libstdc++.so.6[0x3a6f6b6490]
  7.  
    /lib64/libpthread.so.0[0x339a807851]
  8.  
    /lib64/libc.so.6(clone+0x6d)[0x339a4e767d]

注意其中的第四行:./test(_Z1gv+0x25)[0x405909]。使用addr2line命令:

addr2line -e test 0x405909

获得非法篡改的代码位置:

/home/yebangyu/test.cpp:13

真相大白了。

原文地址:https://www.cnblogs.com/sky-heaven/p/9950639.html