Python 的 pandas 实践

Python 的 pandas 实践:

  1 # !/usr/bin/env python
  2 # encoding: utf-8
  3 __author__ = 'Administrator'
  4 import pandas as pd
  5 import numpy as np
  6 import matplotlib.pyplot as plt
  7 
  8 
  9 #一、创建对象
 10 #1. 通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
 11 s=pd.Series([1,3,4,np.nan,6,8])
 12 print(s)
 13 # 0    1.0
 14 # 1    3.0
 15 # 2    4.0
 16 # 3    NaN
 17 # 4    6.0
 18 # 5    8.0
 19 # dtype: float64
 20 
 21 #2.通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
 22 dates=pd.date_range('20180301',periods=6)
 23 print(dates)
 24 # DatetimeIndex(['2018-03-01', '2018-03-02', '2018-03-03', '2018-03-04',
 25 #                '2018-03-05', '2018-03-06'],
 26 #               dtype='datetime64[ns]', freq='D')
 27 df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
 28 # numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值。(可含负数)
 29 # numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中。
 30 #P=numpy.random.rand(N,K) #随机生成一个 N行 K列的矩阵
 31 print(df)
 32 #                    A         B         C         D
 33 # 2018-03-01 -0.451506 -0.884044 -0.916664 -0.763684
 34 # 2018-03-02 -0.463568  0.340688 -0.077484 -0.237660
 35 # 2018-03-03 -1.533427  0.301283  0.268640 -0.011027
 36 # 2018-03-04  1.036050  0.402203  0.485365  2.086525
 37 # 2018-03-05  0.221578 -0.821756 -0.265241  0.277563
 38 # 2018-03-06  1.774195 -0.288553  1.527936  0.119153
 39 
 40 # '''
 41 
 42 #3.通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
 43 df2=pd.DataFrame({
 44     'A':1.,
 45     'B':pd.Timestamp('20180301'),
 46     'C':pd.Series(1,index=list(range(4)),dtype='float32'),
 47     'D':np.array([3]*4,dtype='int32'),
 48     'E':pd.Categorical(["test","train","test","train"]),
 49     'F':'foo'})
 50 print(df2)
 51 #      A          B    C  D      E    F
 52 # 0  1.0 2018-03-01  1.0  3   test  foo
 53 # 1  1.0 2018-03-01  1.0  3  train  foo
 54 # 2  1.0 2018-03-01  1.0  3   test  foo
 55 # 3  1.0 2018-03-01  1.0  3  train  foo
 56 
 57 #4.查看不同列的数据类型:
 58 print(df2.dtypes)
 59 # A           float64
 60 # B    datetime64[ns]
 61 # C           float32
 62 # D             int32
 63 # E          category
 64 # F            object
 65 # dtype: object
 66 
 67 #二、查看数据
 68 #1. 查看dataframe中头部和尾部的行:
 69 print(df.head())
 70 #                    A         B         C         D
 71 # 2018-03-01 -0.250132 -1.403066  1.234990 -3.077763
 72 # 2018-03-02  0.387496 -0.389183  0.186663  1.124608
 73 # 2018-03-03 -0.105463 -0.230739 -0.227575  0.308565
 74 # 2018-03-04 -1.703507  0.194876  1.790366 -0.561566
 75 # 2018-03-05 -0.511609  0.695915  0.398392  0.107062
 76 print(df.tail(3))
 77 #                    A         B         C         D
 78 # 2018-03-04  0.704065  0.492649  0.533961 -1.518723
 79 # 2018-03-05  2.192819 -0.508099 -0.173966 -0.401864
 80 # 2018-03-06 -0.839634 -0.314676 -0.808266 -0.578229
 81 
 82 #2.显示索引、列和底层的numpy数据:
 83 print(df.index)
 84 # DatetimeIndex(['2018-03-01', '2018-03-02', '2018-03-03', '2018-03-04',
 85 #                '2018-03-05', '2018-03-06'],
 86 #               dtype='datetime64[ns]', freq='D')
 87 print(df.columns)
 88 #Index(['A', 'B', 'C', 'D'], dtype='object')
 89 print(df.values)
 90 # [[ 1.65612186 -0.47932887  0.9673593  -0.63872414]
 91 #  [ 0.12229686  0.08831358  1.07344126 -0.12742276]
 92 #  [ 0.54654075  0.77281164 -0.6396787   0.1585142 ]
 93 #  [-0.70695944 -2.12273423 -0.24549759 -0.09530991]
 94 #  [ 2.66920788  0.6520858   1.72857641 -1.34418643]
 95 #  [ 1.87333346 -0.42716996  0.49558928 -1.47606701]]
 96 
 97 #3. describe()函数对于数据的快速统计汇总:
 98 print(df.describe())
 99 #               A         B         C         D
100 # count  6.000000  6.000000  6.000000  6.000000
101 # mean   0.399068  0.339270  0.755588 -0.459344
102 # std    0.890360  1.011113  0.851783  1.759264
103 # min   -1.002101 -0.806772 -0.333761 -2.411582
104 # 25%   -0.087757 -0.400563  0.338822 -1.782221
105 # 50%    0.577418  0.244011  0.502612 -0.622453
106 # 75%    1.096592  0.941454  1.376095  0.433235
107 # max    1.281508  1.795854  1.910586  2.284103
108 
109 #4. 对数据的转置:
110 print(df.T)
111 #    2018-03-01  2018-03-02  2018-03-03  2018-03-04  2018-03-05  2018-03-06
112 # A    0.843347   -0.906826   -0.528945    1.186650   -1.839152   -0.508169
113 # B   -0.105481    2.084689   -1.106710    0.521137    0.741946    0.399700
114 # C   -0.786144    0.269116   -0.180710    3.345385    1.310786   -0.204216
115 # D    0.453731   -0.243617    0.701440    2.541094    1.337923   -0.673128
116 
117 #5. 按轴进行排序
118 print(df.sort_index(axis=1,ascending=False)) #  axis = 0是按行进行操作, axis=1是按列进行操作;  ascending=False是只递减,否则递增
119 #                    D         C         B         A
120 # 2018-03-01  0.389294 -0.227394  0.649234  0.639820
121 # 2018-03-02  0.680265  0.466626 -1.940228  0.843753
122 # 2018-03-03  1.520800  0.570192  1.244427 -0.715080
123 # 2018-03-04  0.309068 -0.224222 -0.226254  1.416381
124 # 2018-03-05 -1.854131 -0.403245 -0.017054  0.840840
125 # 2018-03-06 -1.991173  1.275825  0.913996  1.561550
126 
127 #6. 按值进行排序
128 # print(df.sort(column='B')) #?? AttributeError: 'DataFrame' object has no attribute 'sort'
129 
130 #三、选择
131 # 虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,
132 # 但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix
133 #(一)获取:
134 #1. 选择一个单独的列,这将会返回一个Series,等同于 df.A:
135 print(df['A'])
136 # 2018-03-01    0.156236
137 # 2018-03-02   -0.041257
138 # 2018-03-03   -0.970551
139 # 2018-03-04   -1.751839
140 # 2018-03-05    1.521352
141 # 2018-03-06    0.828690
142 # Freq: D, Name: A, dtype: float64
143 
144 #2. 通过[]进行选择,这将会对行进行切片
145 print(df[0:3])
146 #                    A         B         C         D
147 # 2018-03-01 -0.432011  0.697033 -3.028116 -0.217882
148 # 2018-03-02 -1.744071  0.647694  1.031179 -1.043985
149 # 2018-03-03 -0.673125  0.689913  0.648986 -1.471825
150 print(df['20180302':'20180304'])
151 #                    A         B         C         D
152 # 2018-03-02 -0.803947  0.147807 -0.248534  0.496719
153 # 2018-03-03 -1.518123  0.376390 -0.793349  0.612074
154 # 2018-03-04  0.146634  0.506102  1.316693 -0.801691
155 
156 #(二)通过标签选择:
157 #1. 使用标签来获取一个交叉的区域:
158 print(df.loc[dates[0]])
159 # A   -1.593039
160 # B    0.400735
161 # C   -0.870638
162 # D   -0.551766
163 # Name: 2018-03-01 00:00:00, dtype: float64
164 #2. 通过标签来在多个轴上进行选择:
165 print(df.loc[:,['A','B']])
166 #                    A         B
167 # 2018-03-01  0.326446  0.633246
168 # 2018-03-02  0.169674  0.892832
169 # 2018-03-03 -0.755691 -2.028912
170 # 2018-03-04 -1.005360  0.529193
171 # 2018-03-05 -0.457140  0.842211
172 # 2018-03-06  0.343157  0.879763
173 
174 #3. 标签切片
175 print(df.loc['20180302':'20180304',['A','B']])
176 #                    A         B
177 # 2018-03-02  0.197173  0.040377
178 # 2018-03-03  2.064367  1.112152
179 # 2018-03-04  0.888216 -0.591129
180 
181 #4. 对于返回的对象进行维度缩减
182 print(df.loc['20180302',['A','B']])
183 # A   -0.259955
184 # B   -0.019266
185 # Name: 2018-03-02 00:00:00, dtype: float64
186 
187 #5. 获取一个标量
188 print(df.loc[dates[0],'A']) #-0.313259346223
189 
190 #6. 快速访问一个标量(与上一个方法等价)
191 print(df.at[dates[0],'A'])  #-0.313259346223
192 
193 #(三)通过位置选择:
194 #1. 通过传递数值进行位置选择(选择的是行)
195 print(df.iloc[3])
196 # A    1.661488
197 # B   -1.175748
198 # C    0.642823
199 # D   -0.491914
200 # Name: 2018-03-04 00:00:00, dtype: float64
201 
202 #2. 通过数值进行切片,与numpy/python 中的情况类似
203 print(df.iloc[3:5,0:2]) #选择第3、第4行,第1、第2列
204 #                    A         B
205 # 2018-03-04  0.492426  0.412712
206 # 2018-03-05  0.541252 -0.009380
207 
208 #3. 通过制定一个位置的列表,与numpy/python中的情况类似
209 print(df.iloc[[1,2,4],[0,2]])
210 #                    A         C
211 # 2018-03-02 -0.638074  1.794516
212 # 2018-03-03 -0.403471 -0.934373
213 # 2018-03-05 -1.309320  1.353276
214 
215 #4. 对行进行切片
216 print(df.iloc[1:3,:])
217 #                    A         B         C         D
218 # 2018-03-02  1.980513 -0.218688  2.627449  1.314947
219 # 2018-03-03 -0.532379  1.382092 -1.270961  0.722475
220 
221 #5. 对列进行切片
222 print(df.iloc[:,1:3])
223 #                    B         C
224 # 2018-03-01  0.332228 -1.682811
225 # 2018-03-02 -0.533398 -0.254960
226 # 2018-03-03 -0.926688  0.890513
227 # 2018-03-04 -0.448742  0.763850
228 # 2018-03-05 -0.841622  0.514873
229 # 2018-03-06 -1.346557  1.516414
230 
231 #6. 获取特定的值
232 print(df.iloc[1,1]) #0.481882236461
233 print(df.iat[1,1]) #0.481882236461
234 
235 
236 
237 #(四)布尔索引:
238 #1. 使用一个单独列的值来选择数据:
239 print(df[df.A>0])
240 #                    A         B         C         D
241 # 2018-03-02  0.566243  1.510954 -0.898180  0.856439
242 # 2018-03-03  1.008447 -1.597226 -0.665134 -0.287472
243 # 2018-03-05  0.952498 -0.144979  0.620468 -0.830652
244 
245 #2. 使用where操作来选择数据:
246 print(df[df>0])
247 #                    A         B         C         D
248 # 2018-03-01  0.892660       NaN       NaN       NaN
249 # 2018-03-02  1.512600       NaN       NaN  1.375527
250 # 2018-03-03  0.970026  1.184603  1.182990       NaN
251 # 2018-03-04  1.913993       NaN  0.914778  0.137170
252 # 2018-03-05  0.482589       NaN       NaN  0.668817
253 # 2018-03-06       NaN  0.539344  0.142892       NaN
254 
255 #3. 使用isin()方法来过滤:
256 df2=df.copy()
257 df2['E']=['one','one','two','three','four','three']
258 print(df2)
259 #                    A         B         C         D      E
260 # 2018-03-01 -1.138724  0.566583  0.338254  2.072839    one
261 # 2018-03-02 -0.366949  0.335546  1.653024  1.445071    one
262 # 2018-03-03  0.724615  1.715933 -0.754757 -1.452252    two
263 # 2018-03-04 -0.881962 -0.173858 -0.340868 -0.556665  three
264 # 2018-03-05 -2.126513 -0.113010 -0.796566  0.210673   four
265 # 2018-03-06  0.716490  0.223395 -1.428238  0.328406  three
266 print(df2[df2['E'].isin(['two','four'])])
267 #                    A         B         C         D     E
268 # 2018-03-03 -0.737833 -1.161520  0.897204 -0.029158   two
269 # 2018-03-05  1.072054  1.234587  0.935680 -1.284542  four
270 
271 
272 
273 #(五)设置:
274 #1. 设置一个新的列:
275 s1=pd.Series([1,2,3,4,5,6],index=pd.date_range('20180302',periods=6))
276 print(s1)
277 # 2018-03-02    1
278 # 2018-03-03    2
279 # 2018-03-04    3
280 # 2018-03-05    4
281 # 2018-03-06    5
282 # 2018-03-07    6
283 # Freq: D, dtype: int64
284 df['F']=s1
285 print(df)
286 #                    A         B         C         D    F
287 # 2018-03-01  2.413592 -0.336264  0.165597  2.143270  NaN
288 # 2018-03-02 -1.921596 -2.100707 -0.454461  0.563247  1.0
289 # 2018-03-03 -0.235034 -0.517009 -2.409731 -0.711854  2.0
290 # 2018-03-04  0.667604 -0.838737 -0.425916 -0.238519  3.0
291 # 2018-03-05  1.057415  1.457143  0.440690  0.948613  4.0
292 # 2018-03-06  0.539187 -0.952633  0.316752  0.422146  5.0
293 
294 #2. 通过标签设置新的值:
295 df.at[dates[0],'A']=0
296 
297 #3. 通过位置设置新的值:
298 df.iat[0,1]=0
299 
300 #4. 通过一个numpy数组设置一组新值:
301 df.loc[:,'D']=np.array([5]*len(df))
302 print(df)
303 #                    A         B         C  D    F
304 # 2018-03-01  0.000000  0.000000  0.164267  5  NaN
305 # 2018-03-02  0.614534 -0.865975 -0.977389  5  1.0
306 # 2018-03-03 -0.253095 -1.451951  2.360233  5  2.0
307 # 2018-03-04  0.143115  0.363544  1.587648  5  3.0
308 # 2018-03-05  0.010932  0.802590 -1.701589  5  4.0
309 # 2018-03-06 -0.354579  0.830066  0.404646  5  5.0
310 
311 #5. 通过where操作来设置新的值:
312 df2=df.copy()
313 df2[df2>0]=-df2
314 print(df2)
315 #                    A         B         C  D    F
316 # 2018-03-01  0.000000  0.000000 -1.385454 -5  NaN
317 # 2018-03-02 -0.773506 -0.444692 -0.620307 -5 -1.0
318 # 2018-03-03 -0.506590 -2.445527 -0.664229 -5 -2.0
319 # 2018-03-04 -0.568711 -0.709224 -2.582502 -5 -3.0
320 # 2018-03-05 -1.074985 -2.480905 -0.537869 -5 -4.0
321 # 2018-03-06 -2.659346 -1.055430 -0.379758 -5 -5.0
322 
323 
324 
325 #四、缺失值处理
326 # 在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。
327 #1. reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:
328 df1=df.reindex(index=dates[0:4],columns=list(df.columns)+['E'])
329 df1.loc[dates[0]:dates[1],'E']=1
330 print(df1)
331 #                    A         B         C         D    E
332 # 2018-03-01 -0.275255 -0.290044  0.707118  1.094318  1.0
333 # 2018-03-02 -1.340747  0.633546 -0.911210 -0.275105  1.0
334 # 2018-03-03 -1.044219  0.659945  1.370910  0.262282  NaN
335 # 2018-03-04 -0.015582  1.540852 -0.792882 -0.380751  NaN
336 
337 #2. 去掉包含缺失值的行:
338 # df1=df1.dropna(how='any')
339 # print(df1)
340 # #                    A         B         C         D    E
341 # 2018-03-01 -0.914568  0.784980 -1.698139 -0.096874  1.0
342 # 2018-03-02 -0.410249 -0.494166  0.932946 -0.467547  1.0
343 
344 #3. 对缺失值进行填充:
345 df1=df1.fillna(value=5)
346 print(df1)
347 #                    A         B         C         D    E
348 # 2018-03-01 -1.265605  0.778767 -0.947968 -1.330982  1.0
349 # 2018-03-02  1.778973 -1.428542  1.257860  0.362724  1.0
350 # 2018-03-03 -1.589094 -0.517478 -0.164942 -0.507224  5.0
351 # 2018-03-04  2.363145  2.089114 -0.081683 -0.184851  5.0
352 
353 #4.对数据进行布尔填充
354 df1=pd.isnull(df1)
355 print(df1)
356 #                 A      B      C      D      E
357 # 2018-03-01  False  False  False  False  False
358 # 2018-03-02  False  False  False  False  False
359 # 2018-03-03  False  False  False  False  False
360 # 2018-03-04  False  False  False  False  False
361 
362 
363 
364 
365 #五、相关操作
366 # (一)统计(相关操作通常情况下不包括缺失值)
367 # #1. 执行描述性统计:
368 print(df.mean())
369 # A   -0.066441
370 # B    0.154609
371 # C   -0.154372
372 # D   -0.155221
373 # dtype: float64
374 
375 #2. 在其他轴上进行相同的操作:
376 print(df.mean(1))
377 # 2018-03-01   -0.138352
378 # 2018-03-02   -0.226558
379 # 2018-03-03    0.121705
380 # 2018-03-04    0.855662
381 # 2018-03-05   -0.892621
382 # 2018-03-06    0.062726
383 # Freq: D, dtype: float64
384 
385 #3.对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:
386 
387 
388 # (二)Apply
389 #1. 对数据应用函数:
390 print(df)
391 print(df.apply(np.cumsum))
392 #                    A         B         C         D
393 # 2018-03-01 -0.381460 -0.296346  1.229803 -1.300226
394 # 2018-03-02  0.365891  0.974026  1.570268 -2.572981
395 # 2018-03-03  0.624070  0.211935  0.635084 -1.110378
396 # 2018-03-04  2.945062 -0.406832 -0.043918 -0.470773
397 # 2018-03-05  3.542080  0.092974 -1.585544 -0.658267
398 # 2018-03-06  3.440084  0.448828 -2.400617 -0.734055
399 print(df.apply(lambda x:x.max()-x.min()))
400 # A    2.702452
401 # B    2.032463
402 # C    2.771429
403 # D    2.762828
404 # dtype: float64
405 
406 # (三)直方图
407 s=pd.Series(np.random.randint(0,7,size=10))
408 print(s)
409 # 0    2
410 # 1    6
411 # 2    6
412 # 3    3
413 # 4    3
414 # 5    4
415 # 6    4
416 # 7    6
417 # 8    6
418 # 9    2
419 # dtype: int32
420 print(s.value_counts())
421 # 6    4
422 # 4    2
423 # 3    2
424 # 2    2
425 # dtype: int64
426 
427 
428 # (四)字符串方法
429 # Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。
430 s=pd.Series(['A','B','C','Aaba','Baca',np.nan,'CABA','dog','cat'])
431 print(s.str.lower())
432 # 0       a
433 # 1       b
434 # 2       c
435 # 3    aaba
436 # 4    baca
437 # 5     NaN
438 # 6    caba
439 # 7     dog
440 # 8     cat
441 # dtype: object
442 
443 
444 
445 #六、合并
446 #Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。
447 #1、Concat
448 df=pd.DataFrame(np.random.randn(10,4))
449 print(df)
450 #           0         1         2         3
451 # 0  0.620744 -0.921194  0.130483 -0.305914
452 # 1  0.311699 -0.085041  0.638297 -0.077868
453 # 2  0.327473 -0.732598 -0.134463  0.498805
454 # 3 -0.622715 -0.819375 -0.473504 -0.379117
455 # 4 -1.309207 -0.794917 -1.284665  0.830677
456 # 5 -1.170121 -2.063048 -0.836381  0.925829
457 # 6 -0.766342  0.454018 -0.181846 -1.052607
458 # 7 -0.996856  0.189226  0.428375 -1.149523
459 # 8  1.080517  1.884718 -0.065141 -0.781686
460 # 9  0.087353  0.209678 -1.333989  0.863220
461 
462 #break it into pieces
463 pieces=[df[:3],df[3:7],df[7:]]
464 print(pieces)
465 print(pd.concat(pieces))
466 #           0         1         2         3
467 # 0  1.187009 -0.493550  0.777065  1.494107
468 # 1 -0.915190  1.228669  0.216910  1.610432
469 # 2 -0.647737  1.961472  1.369682 -1.195257
470 # 3  1.474973  1.968576  1.282678 -1.798167
471 # 4  1.449858 -1.828631 -0.217424  0.992141
472 # 5 -1.056223  0.464964  0.135468  0.181781
473 # 6 -1.677772  1.456419  0.642563 -0.895238
474 # 7  0.123780  0.030988  1.960217  0.140918
475 # 8  1.071418  1.737486 -0.170948  0.859271
476 # 9 -0.056640 -1.439686 -0.358960 -1.765060
477 
478 
479 #2、Join .类似于SQL类型的合并。
480 left=pd.DataFrame({'key':['foo','foo'],'lval':[1,2]})
481 print(left)
482 #    key  lval
483 # 0  foo     1
484 # 1  foo     2
485 right=pd.DataFrame({'key':['foo','foo'],'rval':[4,5]})
486 print(right)
487 #    key  rval
488 # 0  foo     4
489 # 1  foo     5
490 pd1=pd.merge(left,right,on='key')
491 print(pd1)
492 #    key  lval  rval
493 # 0  foo     1     4
494 # 1  foo     1     5
495 # 2  foo     2     4
496 # 3  foo     2     5
497 
498 #3、Append。将一行连接到一个DataFrame上。
499 df=pd.DataFrame(np.random.randn(8,4),columns=['A','B','C','D'])
500 print(df)
501 #           A         B         C         D
502 # 0  0.205671 -1.236797 -1.127111  1.422836
503 # 1  0.646151  0.202197 -0.160218 -0.839145
504 # 2  1.479783 -0.678455  0.649959 -1.085791
505 # 3 -0.851987 -0.821248  0.125836  0.819543
506 # 4 -1.312988 -0.898903 -0.420592  1.672173
507 # 5  0.240516 -0.711331 -0.717536  0.620066
508 # 6 -0.442280  0.539277 -1.428910  1.060193
509 # 7  0.257239 -2.034086  1.121833  1.518571
510 s=df.iloc[3]
511 df1=df.append(s,ignore_index=True)
512 print(df1)
513 #           A         B         C         D
514 # 0  0.205671 -1.236797 -1.127111  1.422836
515 # 1  0.646151  0.202197 -0.160218 -0.839145
516 # 2  1.479783 -0.678455  0.649959 -1.085791
517 # 3 -0.851987 -0.821248  0.125836  0.819543
518 # 4 -1.312988 -0.898903 -0.420592  1.672173
519 # 5  0.240516 -0.711331 -0.717536  0.620066
520 # 6 -0.442280  0.539277 -1.428910  1.060193
521 # 7  0.257239 -2.034086  1.121833  1.518571
522 # 8 -0.851987 -0.821248  0.125836  0.819543
523 
524 
525 #七、分组
526 #对于“group by”操作,我们通常是指以下一个或多个操作步骤:
527 # * (splitting)按照一些规则将数据分为不同的组;
528 # * (applying)对于每组数据分别执行一个函数;
529 # * (combining)将结果组合到一个数据结构中;
530 
531 df=pd.DataFrame({'A':['foo','bar','foo','bar','foo','bar','foo','foo'],
532                  'B':['one','one','two','three','two','two','one','three'],
533                  'C':np.random.randn(8),
534                  'D':np.random.randn(8) })
535 print(df)
536 #      A      B         C         D
537 # 0  foo    one  0.792610  0.153922
538 # 1  bar    one  1.497661  0.548711
539 # 2  foo    two  0.038679  1.100214
540 # 3  bar  three -1.074874  0.238335
541 # 4  foo    two  1.176477  1.260415
542 # 5  bar    two -0.629367 -1.098556
543 # 6  foo    one  0.015918 -1.646855
544 # 7  foo  three -0.486434 -0.930165
545 
546 #1、分组并对每个分组执行sum函数:
547 dfg=df.groupby('A').sum()
548 print(dfg)
549 #            C         D
550 # A
551 # bar -0.20658 -0.311509
552 # foo  1.53725 -0.062469
553 #2、通过多个列进行分组形成一个层次索引,然后执行函数:
554 dfg2=df.groupby(['A','B']).sum()
555 print(dfg2)
556 #                   C         D
557 # A   B
558 # bar one    1.497661  0.548711
559 #     three -1.074874  0.238335
560 #     two   -0.629367 -1.098556
561 # foo one    0.808528 -1.492933
562 #     three -0.486434 -0.930165
563 #     two    1.215156  2.360629
564 
565 #八、Reshapeing
566 #1、Stack
567 tuples=list(zip(*[['bar','bar','baz','baz','foo','foo','quz','quz'],
568                   ['one','two','one','two','one','two','one','two']]))
569 index=pd.MultiIndex.from_tuples(tuples,names=['first','second'])
570 df=pd.DataFrame(np.random.randn(8,2),index=index,columns=['A','B'])
571 df2=df[:4]
572 print(df2)
573 #                      A         B
574 # first second
575 # bar   one     1.146806  0.413660
576 #       two    -0.241280 -0.756498
577 # baz   one    -0.429149 -1.598932
578 #       two     0.103805 -2.092773
579 
580 stacked=df2.stack()
581 print(stacked)
582 # first  second
583 # bar    one     A   -0.671894
584 #                B    0.488440
585 #        two     A   -0.085894
586 #                B   -0.888060
587 # baz    one     A   -0.647487
588 #                B   -1.573074
589 #        two     A    0.084324
590 #                B   -0.216785
591 # dtype: float64
592 
593 stacked0=stacked.unstack()
594 print(stacked0)
595 #                      A         B
596 # first second
597 # bar   one    -2.281352  0.683124
598 #       two    -2.555841  0.020481
599 # baz   one     1.007699 -0.605463
600 #       two     1.177308  0.833826
601 stacked1=stacked.unstack(1)
602 print(stacked1)
603 # second        one       two
604 # first
605 # bar   A -2.281352 -2.555841
606 #       B  0.683124  0.020481
607 # baz   A  1.007699  1.177308
608 #       B -0.605463  0.833826
609 stacked2=stacked.unstack(0)
610 print(stacked2)
611 # first          bar       baz
612 # second
613 # one    A -0.279379  0.011654
614 #        B  0.713347  0.482510
615 # two    A -0.980093  0.536366
616 #        B -0.378279 -1.023949
617 
618 #2、数据透视表
619 df=pd.DataFrame({'A':['one','one','two','three']*3,
620                  'B':['A','B','C']*4,
621                  'C':['foo','foo','foo','bar','bar','bar']*2,
622                  'D':np.random.randn(12),
623                  'E':np.random.randn(12) })
624 print(df)
625 #         A  B    C         D         E
626 # 0     one  A  foo -1.037929 -0.967839
627 # 1     one  B  foo  0.143201  1.936801
628 # 2     two  C  foo -1.108452  1.350176
629 # 3   three  A  bar  0.696497  0.578974
630 # 4     one  B  bar -1.206393  1.218049
631 # 5     one  C  bar -0.814728  0.440277
632 # 6     two  A  foo -2.039865 -1.298114
633 # 7   three  B  foo -0.155810 -0.249138
634 # 8     one  C  foo -0.436593  0.548266
635 # 9     one  A  bar -2.236853 -1.218478
636 # 10    two  B  bar -0.542738 -1.018322
637 # 11  three  C  bar -0.657995 -0.772053
638 #可以从这个数据中轻松的生成数据透视表:
639 pdtable=pd.pivot_table(df,values='D',index=['A','B'],columns=['C'])
640 print(pdtable)
641 # C             bar       foo
642 # A     B
643 # one   A  0.878124  0.739554
644 #       B  1.508778 -0.261956
645 #       C  0.452780  0.850025
646 # three A -0.616593       NaN
647 #       B       NaN -0.924248
648 #       C -0.778909       NaN
649 # two   A       NaN -0.249317
650 #       B  0.341066       NaN
651 #       C       NaN  0.706030
652 # '''
653 #九、时间序列
654 #Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。
655 # rng=pd.date_range('1/1/2018',periods=100,freq='S')
656 # ts=pd.Series(np.random.randint(0,500,len(rng)),index=rng)
657 # ts0=ts.resample('5Min',how='sum')
658 # ........
659 # ........
660 
661 #十、Categorical
662 #从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据
663 
664 #1、将原始的grade转换为Categorical数据类型:
665 # ........
666 # ........
667 
668 #十一、画图
669 ts=pd.Series(np.random.randn(1000),index=pd.date_range('1/1/2018',periods=1000))
670 ts=ts.cumsum()
671 ts.plot()
672 # ........
673 # ........
674 
675 #十二、导入和保存数据
676 #(一)CSV
677 #1、写入 csv文件
678 df.to_csv('foo.csv')
679 #2、从CSV文件中读取:
680 pd.read_csv('foo.csv')
681 
682 #(二)HDF5
683 #1、
684 # ........
685 # ........
686 
687 #(三)Excel
688 #1、写入excel文件:
689 df.to_excel('foo.xlsx',sheet_name='Sheet1')
690 #2、从excel文件中读取:
691 pd.read_excel('foo.xlsx','Sheet1',index_col=None,na_values=['NA'])
【Reference】
1、十分钟搞定pandas
2、
10 Minutes to pandas


原文地址:https://www.cnblogs.com/shenxiaolin/p/8672866.html