04_离线计算系统_第4天(mapreduce加强)

课程大纲(MAPREDUCE详解)

MapReduce快速入门

如何理解map、reduce计算模型

Mapreudce程序运行演示

Mapreduce编程规范及示例编写

Mapreduce程序运行模式及debug方法

MapReduce高级特性

Mapreduce程序的核心机制

MapReduce的序列化框架

MapReduce的排序实现

MapReduce的分区机制及自定义

Mapreduce的数据压缩

Mapreduce与yarn的结合

Mapreduce编程案例

 

Mapreduce 参数优化

 

 

目标:

掌握mapreduce分布式运算框架的编程思想

掌握mapreduce常用算法的编程套路

掌握mapreduce分布式运算框架的运行机制,具备一定自定义开发的能力

 

 

 

 

 

 

 

 

流量统计相关需求

1、对流量日志中的用户统计总上、下行流量

技术点: 自定义javaBean用来在mapreduce中充当value

注意: javaBean要实现Writable接口,实现两个方法

//序列化,将对象的字段信息写入输出流

@Override

public void write(DataOutput out) throws IOException {

 

out.writeLong(upflow);

out.writeLong(downflow);

out.writeLong(sumflow);

 

}

 

//反序列化,从输入流中读取各个字段信息

@Override

public void readFields(DataInput in) throws IOException {

upflow = in.readLong();

downflow = in.readLong();

sumflow = in.readLong();

 

}

 

 

2、统计流量且按照流量大小倒序排序

技术点:这种需求,用一个mapreduce -job 不好实现,需要两个mapreduce -job

第一个job负责流量统计,跟上题相同

第二个job读入第一个job的输出,然后做排序

要将flowBean作为map的key输出,这样mapreduce就会自动排序

     此时,flowBean要实现接口WritableComparable

     要实现其中的compareTo()方法,方法中,我们可以定义倒序比较的逻辑

 

 

3、统计流量且按照手机号的归属地,将结果数据输出到不同的省份文件中

技术点:自定义Partitioner

@Override

public int getPartition(Text key, FlowBean value, int numPartitions) {

 

String prefix = key.toString().substring(0,3);

Integer partNum = pmap.get(prefix);

 

return (partNum==null?4:partNum);

}

 

自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task

job.setNumReduceTasks(5);

 

注意:如果reduceTask的数量>= getPartition的结果数  ,则会多产生几个空的输出文件part-r-000xx

如果     1<reduceTask的数量<getPartition的结果数 ,则有一部分分区数据无处安放,会Exception!!!

如果 reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000

 

 

社交粉丝数据分析

以下是qq的好友列表数据,冒号前是一个用,冒号后是该用户的所有好友(数据中的好友关系是单向的)

A:B,C,D,F,E,O

B:A,C,E,K

C:F,A,D,I

D:A,E,F,L

E:B,C,D,M,L

F:A,B,C,D,E,O,M

G:A,C,D,E,F

H:A,C,D,E,O

I:A,O

J:B,O

K:A,C,D

L:D,E,F

M:E,F,G

O:A,H,I,J

 

求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?

解题思路:

第一步  

map

读一行   A:B,C,D,F,E,O

输出    <B,A><C,A><D,A><F,A><E,A><O,A>

在读一行   B:A,C,E,K

输出   <A,B><C,B><E,B><K,B>

 

 

REDUCE

拿到的数据比如<C,A><C,B><C,E><C,F><C,G>......

输出:  

<A-B,C>

<A-E,C>

<A-F,C>

<A-G,C>

<B-E,C>

<B-F,C>.....

 

 

 

第二步

map

读入一行<A-B,C>

直接输出<A-B,C>

 

reduce

读入数据  <A-B,C><A-B,F><A-B,G>.......

输出: A-B  C,F,G,.....

 

扩展:求互粉的人!!!!

 

倒排索引建立

需求:有大量的文本(文档、网页),需要建立搜索索引

 

 

 

 

 

 

 

 

 

 

1. 自定义inputFormat

1.1 需求

无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案

 

1.2 分析

小文件的优化无非以下几种方式:

1、 在数据采集的时候,将小文件或小批数据合成大文件再上传HDFS

2、 在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并

3、 在mapreduce处理时,可采用combineInputFormat提高效率

 

1.3 实现

本节实现的是上述第二种方式

程序的核心机制:

自定义一个InputFormat

改写RecordReader,实现一次读取一个完整文件封装为KV

在输出时使用SequenceFileOutPutFormat输出合并文件

 

代码如下:

自定义InputFromat

public class WholeFileInputFormat extends

FileInputFormat<NullWritable, BytesWritable> {

//设置每个小文件不可分片,保证一个小文件生成一个key-value键值对

@Override

protected boolean isSplitable(JobContext context, Path file) {

return false;

}

 

@Override

public RecordReader<NullWritable, BytesWritable> createRecordReader(

InputSplit split, TaskAttemptContext context) throws IOException,

InterruptedException {

WholeFileRecordReader reader = new WholeFileRecordReader();

reader.initialize(split, context);

return reader;

}

}

 

 

自定义RecordReader

class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {

private FileSplit fileSplit;

private Configuration conf;

private BytesWritable value = new BytesWritable();

private boolean processed = false;

 

@Override

public void initialize(InputSplit split, TaskAttemptContext context)

throws IOException, InterruptedException {

this.fileSplit = (FileSplit) split;

this.conf = context.getConfiguration();

}

 

@Override

public boolean nextKeyValue() throws IOException, InterruptedException {

if (!processed) {

byte[] contents = new byte[(int) fileSplit.getLength()];

Path file = fileSplit.getPath();

FileSystem fs = file.getFileSystem(conf);

FSDataInputStream in = null;

try {

in = fs.open(file);

IOUtils.readFully(in, contents, 0, contents.length);

value.set(contents, 0, contents.length);

} finally {

IOUtils.closeStream(in);

}

processed = true;

return true;

}

return false;

}

 

@Override

public NullWritable getCurrentKey() throws IOException,

InterruptedException {

return NullWritable.get();

}

 

@Override

public BytesWritable getCurrentValue() throws IOException,

InterruptedException {

return value;

}

 

@Override

public float getProgress() throws IOException {

return processed ? 1.0f : 0.0f;

}

 

@Override

public void close() throws IOException {

// do nothing

}

}

 

定义mapreduce处理流程

public class SmallFilesToSequenceFileConverter extends Configured implements

Tool {

static class SequenceFileMapper extends

Mapper<NullWritable, BytesWritable, Text, BytesWritable> {

private Text filenameKey;

 

@Override

protected void setup(Context context) throws IOException,

InterruptedException {

InputSplit split = context.getInputSplit();

Path path = ((FileSplit) split).getPath();

filenameKey = new Text(path.toString());

}

 

@Override

protected void map(NullWritable key, BytesWritable value,

Context context) throws IOException, InterruptedException {

context.write(filenameKey, value);

}

}

 

@Override

public int run(String[] args) throws Exception {

Configuration conf = new Configuration();

System.setProperty("HADOOP_USER_NAME", "hdfs");

String[] otherArgs = new GenericOptionsParser(conf, args)

.getRemainingArgs();

if (otherArgs.length != 2) {

System.err.println("Usage: combinefiles <in> <out>");

System.exit(2);

}

 

Job job = Job.getInstance(conf,"combine small files to sequencefile");

// job.setInputFormatClass(WholeFileInputFormat.class);

job.setOutputFormatClass(SequenceFileOutputFormat.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(BytesWritable.class);

job.setMapperClass(SequenceFileMapper.class);

return job.waitForCompletion(true) ? 0 : 1;

}

 

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(),

args);

System.exit(exitCode);

 

}

}

 

 

 

 

2. 自定义outputFormat

2.1 需求

现有一些原始日志需要做增强解析处理,流程:

1、 从原始日志文件中读取数据

2、 根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志

3、 如果成功增强,则输出到增强结果目录;如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录

 

 

2.2 分析

程序的关键点是要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义outputformat来实现

 

2.3 实现

实现要点:

1、 在mapreduce中访问外部资源

2、 自定义outputformat,改写其中的recordwriter改写具体输出数据的方法write()

 

代码实现如下:

数据库获取数据的工具

public class DBLoader {

 

public static void dbLoader(HashMap<String, String> ruleMap) {

Connection conn = null;

Statement st = null;

ResultSet res = null;

 

try {

Class.forName("com.mysql.jdbc.Driver");

conn = DriverManager.getConnection("jdbc:mysql://hdp-node01:3306/urlknowledge", "root", "root");

st = conn.createStatement();

res = st.executeQuery("select url,content from urlcontent");

while (res.next()) {

ruleMap.put(res.getString(1), res.getString(2));

}

} catch (Exception e) {

e.printStackTrace();

 

} finally {

try{

if(res!=null){

res.close();

}

if(st!=null){

st.close();

}

if(conn!=null){

conn.close();

}

 

}catch(Exception e){

e.printStackTrace();

}

}

}

 

 

public static void main(String[] args) {

DBLoader db = new DBLoader();

HashMap<String, String> map = new HashMap<String,String>();

db.dbLoader(map);

System.out.println(map.size());

}

}

 

 

自定义一个outputformat

public class LogEnhancerOutputFormat extends FileOutputFormat<Text, NullWritable>{

 

 

@Override

public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {

 

 

FileSystem fs = FileSystem.get(context.getConfiguration());

Path enhancePath = new Path("hdfs://hdp-node01:9000/flow/enhancelog/enhanced.log");

Path toCrawlPath = new Path("hdfs://hdp-node01:9000/flow/tocrawl/tocrawl.log");

 

FSDataOutputStream enhanceOut = fs.create(enhancePath);

FSDataOutputStream toCrawlOut = fs.create(toCrawlPath);

 

 

return new MyRecordWriter(enhanceOut,toCrawlOut);

}

 

 

 

static class MyRecordWriter extends RecordWriter<Text, NullWritable>{

 

FSDataOutputStream enhanceOut = null;

FSDataOutputStream toCrawlOut = null;

 

public MyRecordWriter(FSDataOutputStream enhanceOut, FSDataOutputStream toCrawlOut) {

this.enhanceOut = enhanceOut;

this.toCrawlOut = toCrawlOut;

}

 

@Override

public void write(Text key, NullWritable value) throws IOException, InterruptedException {

 

//有了数据,你来负责写到目的地  —— hdfs

//判断,进来内容如果是带tocrawl的,就往待爬清单输出流中写 toCrawlOut

if(key.toString().contains("tocrawl")){

toCrawlOut.write(key.toString().getBytes());

}else{

enhanceOut.write(key.toString().getBytes());

}

 

}

 

@Override

public void close(TaskAttemptContext context) throws IOException, InterruptedException {

 

if(toCrawlOut!=null){

toCrawlOut.close();

}

if(enhanceOut!=null){

enhanceOut.close();

}

 

}

 

 

}

}

 

开发mapreduce处理流程

/**

 * 这个程序是对每个小时不断产生的用户上网记录日志进行增强(将日志中的url所指向的网页内容分析结果信息追加到每一行原始日志后面)

 *

 * @author

 *

 */

public class LogEnhancer {

 

static class LogEnhancerMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

 

HashMap<String, String> knowledgeMap = new HashMap<String, String>();

 

/**

 * maptask在初始化时会先调用setup方法一次 利用这个机制,将外部的知识库加载到maptask执行的机器内存中

 */

@Override

protected void setup(org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {

 

DBLoader.dbLoader(knowledgeMap);

 

}

 

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

 

String line = value.toString();

 

String[] fields = StringUtils.split(line, " ");

 

try {

String url = fields[26];

 

// 对这一行日志中的url去知识库中查找内容分析信息

String content = knowledgeMap.get(url);

 

// 根据内容信息匹配的结果,来构造两种输出结果

String result = "";

if (null == content) {

// 输往待爬清单的内容

result = url + " " + "tocrawl ";

} else {

// 输往增强日志的内容

result = line + " " + content + " ";

}

 

context.write(new Text(result), NullWritable.get());

} catch (Exception e) {

 

}

}

 

}

 

public static void main(String[] args) throws Exception {

 

Configuration conf = new Configuration();

 

Job job = Job.getInstance(conf);

 

job.setJarByClass(LogEnhancer.class);

 

job.setMapperClass(LogEnhancerMapper.class);

 

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

 

// 要将自定义的输出格式组件设置到job中

job.setOutputFormatClass(LogEnhancerOutputFormat.class);

 

FileInputFormat.setInputPaths(job, new Path(args[0]));

 

// 虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat

// 而fileoutputformat要输出一个_SUCCESS文件,所以,在这还得指定一个输出目录

FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

job.waitForCompletion(true);

System.exit(0);

 

}

 

}

3. 自定义GroupingComparator

3.1 需求

有如下订单数据

订单id

商品id

成交金额

Order_0000001

Pdt_01

222.8

Order_0000001

Pdt_05

25.8

Order_0000002

Pdt_03

522.8

Order_0000002

Pdt_04

122.4

Order_0000003

Pdt_01

222.8

 

现在需要求出每一个订单中成交金额最大的一笔交易

 

3.2 分析

1、利用“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照金额排序,发送到reduce

2、在reduce端利用groupingcomparator将订单id相同的kv聚合成组,然后取第一个即是最大值

 

 

3.3 实现

自定义groupingcomparator

/**

 * 用于控制shuffle过程中reduce端对kv对的聚合逻辑

 * @author duanhaitao@itcast.cn

 *

 */

public class ItemidGroupingComparator extends WritableComparator {

 

protected ItemidGroupingComparator() {

 

super(OrderBean.class, true);

}

 

 

@Override

public int compare(WritableComparable a, WritableComparable b) {

OrderBean abean = (OrderBean) a;

OrderBean bbean = (OrderBean) b;

 

//将item_id相同的bean都视为相同,从而聚合为一组

return abean.getItemid().compareTo(bbean.getItemid());

}

}

 

 

定义订单信息bean

/**

 * 订单信息bean,实现hadoop的序列化机制

 * @author duanhaitao@itcast.cn

 *

 */

public class OrderBean implements WritableComparable<OrderBean>{

private Text itemid;

private DoubleWritable amount;

 

public OrderBean() {

}

public OrderBean(Text itemid, DoubleWritable amount) {

set(itemid, amount);

}

 

public void set(Text itemid, DoubleWritable amount) {

 

this.itemid = itemid;

this.amount = amount;

 

}

 

public Text getItemid() {

return itemid;

}

 

public DoubleWritable getAmount() {

return amount;

}

 

@Override

public int compareTo(OrderBean o) {

int cmp = this.itemid.compareTo(o.getItemid());

if (cmp == 0) {

 

cmp = -this.amount.compareTo(o.getAmount());

}

return cmp;

}

 

@Override

public void write(DataOutput out) throws IOException {

out.writeUTF(itemid.toString());

out.writeDouble(amount.get());

 

}

 

@Override

public void readFields(DataInput in) throws IOException {

String readUTF = in.readUTF();

double readDouble = in.readDouble();

 

this.itemid = new Text(readUTF);

this.amount= new DoubleWritable(readDouble);

}

 

 

@Override

public String toString() {

return itemid.toString() + " " + amount.get();

}

}

 

编写mapreduce处理流程

/**

 * 利用secondarysort机制输出每种item订单金额最大的记录

 * @author duanhaitao@itcast.cn

 *

 */

public class SecondarySort {

 

static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{

 

OrderBean bean = new OrderBean();

 

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

 

String line = value.toString();

String[] fields = StringUtils.split(line, " ");

 

bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));

 

context.write(bean, NullWritable.get());

 

}

 

}

 

static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{

 

 

//在设置了groupingcomparator以后,这里收到的kv数据 就是:  <1001 87.6>,null  <1001 76.5>,null  ....

//此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>

//要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key

@Override

protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {

context.write(key, NullWritable.get());

}

}

 

 

public static void main(String[] args) throws Exception {

 

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

 

job.setJarByClass(SecondarySort.class);

 

job.setMapperClass(SecondarySortMapper.class);

job.setReducerClass(SecondarySortReducer.class);

 

 

job.setOutputKeyClass(OrderBean.class);

job.setOutputValueClass(NullWritable.class);

 

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

//指定shuffle所使用的GroupingComparator类

job.setGroupingComparatorClass(ItemidGroupingComparator.class);

//指定shuffle所使用的partitioner类

job.setPartitionerClass(ItemIdPartitioner.class);

 

job.setNumReduceTasks(3);

 

job.waitForCompletion(true);

 

}

 

}

 

 

4. Mapreduce中的DistributedCache应用

4.1 Map端join案例

4.1.1 需求

实现两个“表”的join操作,其中一个表数据量小,一个表很大,这种场景在实际中非常常见,比如“订单日志” join “产品信息”

 

 

4.1.2 分析

--原理阐述

适用于关联表中有小表的情形;

可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果

可以大大提高join操作的并发度,加快处理速度

 

--示例:先在mapper类中预先定义好小表,进行join

--并用distributedcache机制将小表的数据分发到每一个maptask执行节点,从而每一个maptask节点可以从本地加载到小表的数据,进而在本地即可实现join

 

4.1.3 实现

public class TestDistributedCache {

static class TestDistributedCacheMapper extends Mapper<LongWritable, Text, Text, Text>{

FileReader in = null;

BufferedReader reader = null;

HashMap<String,String> b_tab = new HashMap<String, String>();

String localpath =null;

String uirpath = null;

 

//是在map任务初始化的时候调用一次

@Override

protected void setup(Context context) throws IOException, InterruptedException {

//通过这几句代码可以获取到cache file的本地绝对路径,测试验证用

Path[] files = context.getLocalCacheFiles();

localpath = files[0].toString();

URI[] cacheFiles = context.getCacheFiles();

 

 

//缓存文件的用法——直接用本地IO来读取

//这里读的数据是map task所在机器本地工作目录中的一个小文件

in = new FileReader("b.txt");

reader =new BufferedReader(in);

String line =null;

while(null!=(line=reader.readLine())){

 

String[] fields = line.split(",");

b_tab.put(fields[0],fields[1]);

 

}

IOUtils.closeStream(reader);

IOUtils.closeStream(in);

 

}

 

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

 

//这里读的是这个map task所负责的那一个切片数据(在hdfs上)

 String[] fields = value.toString().split(" ");

 

 String a_itemid = fields[0];

 String a_amount = fields[1];

 

 String b_name = b_tab.get(a_itemid);

 

 // 输出结果  1001 98.9 banan

 context.write(new Text(a_itemid), new Text(a_amount + " " + ":" + localpath + " " +b_name ));

 

}

}

public static void main(String[] args) throws Exception {

 

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

 

job.setJarByClass(TestDistributedCache.class);

 

job.setMapperClass(TestDistributedCacheMapper.class);

 

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);

 

//这里是我们正常的需要处理的数据所在路径

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

 

//不需要reducer

job.setNumReduceTasks(0);

//分发一个文件到task进程的工作目录

job.addCacheFile(new URI("hdfs://hadoop-server01:9000/cachefile/b.txt"));

 

//分发一个归档文件到task进程的工作目录

// job.addArchiveToClassPath(archive);

 

//分发jar包到task节点的classpath下

// job.addFileToClassPath(jarfile);

 

job.waitForCompletion(true);

}

}

 

 

5. Mapreduce的其他补充

5.1 计数器应用

在实际生产代码中,常常需要将数据处理过程中遇到的不合规数据行进行全局计数,类似这种需求可以借助mapreduce框架中提供的全局计数器来实现

示例代码如下:

public class MultiOutputs {

//通过枚举形式定义自定义计数器

enum MyCounter{MALFORORMED,NORMAL}

 

static class CommaMapper extends Mapper<LongWritable, Text, Text, LongWritable> {

 

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

 

String[] words = value.toString().split(",");

 

for (String word : words) {

context.write(new Text(word), new LongWritable(1));

}

//对枚举定义的自定义计数器加1

context.getCounter(MyCounter.MALFORORMED).increment(1);

//通过动态设置自定义计数器加1

context.getCounter("counterGroupa", "countera").increment(1);

}

 

}

 

 

 

 

 

 

5.2 多job串联

一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现

 

示例代码:

      ControlledJob cJob1 = new ControlledJob(job1.getConfiguration());

        ControlledJob cJob2 = new ControlledJob(job2.getConfiguration());

        ControlledJob cJob3 = new ControlledJob(job3.getConfiguration());

       

        // 设置作业依赖关系

        cJob2.addDependingJob(cJob1);

        cJob3.addDependingJob(cJob2);

 

        JobControl jobControl = new JobControl("RecommendationJob");

        jobControl.addJob(cJob1);

        jobControl.addJob(cJob2);

        jobControl.addJob(cJob3);

 

        cJob1.setJob(job1);

        cJob2.setJob(job2);

        cJob3.setJob(job3);

 

        // 新建一个线程来运行已加入JobControl中的作业,开始进程并等待结束

        Thread jobControlThread = new Thread(jobControl);

        jobControlThread.start();

        while (!jobControl.allFinished()) {

            Thread.sleep(500);

        }

        jobControl.stop();

 

        return 0;

 

 

 

 

 

5.3 Configuration对象高级应用

 

 

6. mapreduce参数优化

MapReduce重要配置参数

11.1 资源相关参数

(1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024如果Map Task实际使用的资源量超过该值,则会被强制杀死。

(2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

(3) mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

(4) mapreduce.reduce.java.opts: Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.

“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”

(5) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1

(6) mapreduce.map.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1

 

11.2 容错相关参数

(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(2) mapreduce.reduce.maxattempts:个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

(3) mapreduce.map.failures.maxpercent: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

(4) mapreduce.reduce.failures.maxpercent: 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0.

(5) mapreduce.task.timeout: Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”

11.3 本地运行mapreduce 作业

设置以下几个参数:

mapreduce.framework.name=local

mapreduce.jobtracker.address=local

fs.defaultFS=local

11.4 效率和稳定性相关参数

(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为false

(2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为false

(3) mapreduce.job.user.classpath.first & mapreduce.task.classpath.user.precedence:当同一个class同时出现在用户jar包和hadoop jar中时,优先使用哪个jar包中的class,默认为false,表示优先使用hadoop jar中的class。

(4) mapreduce.input.fileinputformat.split.minsize: 每个Map Task处理的数据量(仅针对基于文件的Inputformat有效,比如TextInputFormat,SequenceFileInputFormat),默认为一个block大小,即 134217728。

 

1、mapreduce框架的设计思想

2、mapreduce框架中的程序实体角色:maptask reducetask mrappmaster

3、mapreduce程序运行的整体流程

4、mapreduce程序中maptask任务切片规划的机制(掌握整体逻辑流程,看day03_word文档中的“maptask并行度”)

5、mapreduce程序提交的整体流程(看图:一坨 "客户端提交mr程序job的流程")

6、编码:
wordcount
流量汇总统计(hadoop的序列化实现)
流量汇总统计并按省份区分

原文地址:https://www.cnblogs.com/shan13936/p/13762962.html