多项式求逆

问题

给定一个多项式(F(x)) ,请求出一个多项式(G(x)),满足(F(x) imes G(x) equiv 1(mathrm{mod:}x^n))

推导

假设我们已经求得了(G_0(x))满足(F(x) imes G_0(x) equiv 1(mathrm{mod:}x^frac{n}{2})),现在求(F(x) imes G(x) equiv 1(mathrm{mod:}x^n))

[egin{aligned} F(x) imes G_0(x) &equiv 1(mathrm{mod:}x^frac{n}{2})\ F(x) imes G_0(x)-1 &equiv 0(mathrm{mod:}x^frac{n}{2})\ (F(x) imes G_0(x)-1)^2 &equiv 0(mathrm{mod:}x^n)\ (F(x) imes G_0(x))^2+1-2 imes F(x) imes G_0(x) &equiv 0(mathrm{mod:}x^n)\ F(x)^2 imes G_0(x)^2+1-2 imes F(x) imes G_0(x) &equiv 0(mathrm{mod:}x^n)\ F(x)^2 imes G_0(x)^2-2 imes F(x) imes G_0(x) &equiv -1(mathrm{mod:}x^n)\ 2 imes F(x) imes G_0(x)-F(x)^2 imes G_0(x)^2 &equiv 1(mathrm{mod:}x^n)\ F(x) imes(2 imes G_0(x)-F(x) imes G_0(x)^2) &equiv 1(mathrm{mod:}x^n) end{aligned}]

所以我们在已知(G_0(x))的前提下,只要求一下(2 imes G_0(x)-F(x) imes G_0(x)^2))就可以了。

时间复杂度

(O(nlog n))

原文地址:https://www.cnblogs.com/sbwll/p/14393864.html