Siamese系列跟踪

算法总结

算法数据集&评价指标网络框图 
SiamFC 创新点:We propose to learn a function that compares an exemplar image to a candidate image of the same size and returns a high score if the two images depict the same object and a low score otherwise. 缺点是没有嵌入多尺度变化,且没有bounding box回归 训练集:ILSVRC:有30钟不同的动物和车,共包含4500个视频 评价指标:OTB-13:平均每帧成功率;OPE(one pass evaluation);TRE(temporal robustness evaluation);SRE(spatial robustness evaluation) VOT-14:accuracy(the average IoU), robustness(total number of failures), A-R plot VOT-15:EAO:(expected average overlap measure, the average IoU with no re-initialization following a failure.) VOT-16:EAO  
SiamRPN 创新点:加入了RPN模块,一是为了区分前景和背景,二是为了proposal refinement。 1)A Siamese network consists of two branches which implicity encodes the original patches to another space and then fuses them with a specific tensor to produce a single output. It's usually used for comparing two branches' features in the implicity embedded space specially for contrastive tasks. 2)特征提取模块 the two branches share parameters in CNN so that the two patches are implicitly encoded by the same transformation which is suitable for the subsequent tasks. 3) RPN is capable of extracting more precise proposals due to the supervision of both foreground-background classifation and bounding box regression. If there are anchors, networks needs to output channels for classification and channels for regression. 4)The two strategies to select the proposals is, first, discarding the bounding boxes generated by the anchors too far away from the center. second, we use cosine window and scale change penalty to re-rank the proposals' score to get the best one. Finally, NMS is performed afterwards to get the final tracking bounding box. 训练集:ILSVRC, Youtube-BB 评价指标: VOT2015:EAO,Accuracy,Failure,EFO(the speed) VOT2016,VOT2017 OTB2015:precision plot(shows the percentage of frames that the tracking results are within 20 pixels from the target.) success plot(shows the ratios of successful frames when threshold varies from 0 to 1) successful frame为overlap larger than given threshold. AUC: area under curve
DaSiamRPN 创新点:(1)设计了高质量的训练数据,网络的性能和训练数据的分布相关。they identify the imbalance of the non-senmantic background and semantic distractor in the training data is the main obstacle for the representation learning. 并设计了数据增强策略:运动模糊 (2)用上下文和时间信息提供关于目标的额外线索,最大限度地提高分辨能力。设计了一个distractor-aware模型,把普通地embedding转换到目前地视频域,在inference时逐步捕捉目标外观变化。其实就是一个NMS时计算score,筛选proposal的策略 (3)对于当前tracker只能进行短距离跟踪,本文引入了local-to-global搜索策略。 1) features used in most Siamese tracking approaches can only discriminate foreground from the non-semantic backgrounds. In SiamFC and SiamRPN, pairs of training data come from different frames of the same video, and for search area, the non-semantic background occupies the majority, while semantic entities and distractor occupy less. Diverse categories of positive pairs can promote the generalization ability. 因此文章用了ImageNet和COCO数据集增加正样本对的数量,提高泛化性能。Semantic negative pairs can improve the discriminative ability. 之前的数据集缺少semantic negative pairs,负样本对要包含目标来自同一类别的和不同类别的。The negative pairs from different categories can help tracker to avoid drifting to arbitrary objects in challenges such as out-of-view and full occlusion, while negative pairs from the same categories make the tracker focused on fine-grained representation. 训练:ImageNet Detection和COCO Detection数据集 测试:短距离:VOT2016,VOT2017,OTB2015 长距离:UAV20L,UAV123

SiamDW 主要创新点:1)增加感受野会减少特征特征区分度和定位精度。过大或过小都不好,只有当感受野和模板差不多大的时候效果最好 2)卷积中的padding会在学习引入位置偏移。 作者提出了一个CIR模块。 3)网络设计方法总结:1.用小的stride.2.输出特征图感受野大小应该和模板一样大。3.网络的stide,感受野和输出特征图的尺寸应该一起设计。4.对于一个全卷积Siamese匹配网络,如何处理两个网络流之间的不一致性很重要,可以去掉padding,或者增大输入模板和被搜索图片的尺寸。
UpdateNet 训练:LaSOT 测试:VOT2016,VOT2018:EAO,A,R LaSOT:OPE criterion of OTB, precision polt, success plot TrackingNet: precision, normalized precision, success 利用首帧真实值,上次计算出的模板,上一帧的模板输入UpdateNet计算的输出,再将首帧模板连接到Update的输出,形成一个残差网络。输出的预测当前帧模板和真实值模板计算L2距离。
SiamRPN++ 创新点:1)把正样本都放在图像中心时,网络只会对图像中心产生响应;如果把正样本均匀分布到某个范围内,而不是一直在中心时(所谓的范围即是指距离中心点一定距离,该距离为shift;正样本在这个范围内是均匀分布的),随着shift的不断增大,这种现象能够逐渐得到缓解。 2)引入了Depthwise Cross Correlation 3)Siamese系列跟踪之前不能用深层网络的两个原因:padding in deep network will destroy the strict translation invariance. RPN requires asymmetrical features for classification and regression.第一个问题通过spatial aware sampling strategy解决。第二个通过depthwise cross correlation 训练:COCO,ImageNet DET,ImageNet VID,YouTube-BoundingBoxes 测试:OTB2015,VOT2018,UAV123,LaSOT,TrackingNet
SiamFC++ 训练:ILSVRC-VID/DET,COCO,Youtube-BB,LaSOT,GOT-10k 测试:OTB2015,VOT,LaSOT,GOT-10k,TrackingNet G1:分解分类与状态估计:分类器专攻将目标物体与背景分离,而状态估计则是为了产生更准确的BB,那些多尺度的方法忽略了后项,因此精度低下; G2:明确分类得分:分类得到应该直接表示为目标在视野中存在的置信度分数,而不是像预定义的anchor一样设置,对于RPN的思想极其容易产生假阳性样本。 G3:去除先验知识:追踪应该符合通用的精神,即比例等因素不该成为搜索或者检测的因素,RPN的思想阻碍了追踪器的泛化能力; G4:作者借鉴了2019年另一篇论文,增加了评估质量的分支,边界框进行分类置信度会导致性能的下降。
SiamMask 训练:COCO,ImageNet-VID,YouTube-VOS 测试:VOT-2016,VOT2018,DAVIS-2016,DAVIS-2017,YouTube-VOS 通过初始帧框定需要跟踪的物体图像(记作template),用作后续帧(记作search)的检索依据; 将template和search同时输入Siameses Net,输出两个feature map,大小两个feature map做互相关(cross-correlated),得到RoW的feature map; 接着 从2输出的feature map再喂入一个简单的两层(1,1)卷积核的网络得到Two-branch或者Three-branch输出,各个branch主要是输出的通道数不一样,进而影响到任务的不一样。 mask可以有两种方法生成,一个是base path生成方式,另一个是通过refine path生成。
D3S 分支出两个互补的模型。一个模型负责追踪物体的非刚性形变,另一个模型负责实现高鲁棒性的在线目标分割。 其中一个分支称为GEM,具有自适应性与高辨别性,受限于欧几里得运动约束,而另一个称为GIM,用于探索更广范围内的目标状态转移情况。GIM牺牲了空间上的关系,追踪目标潜在的形变状态,而GEM仅仅预测位置。 GIM与GEM形成了互补的像素级信息估计。GEM对位置信息敏感,GIM的输出显示出目标的更对细节特征。 训练集:YouTube-VOS 测试集:VOT2016,VOT2018,GOT-10k,TrackingNet
SiamRCNN SiamRCNN是Faster RCNN的改进,在图片中重新检测是否有proposal和模板的目标相同。这样可以让检测的目标不受大小和尺寸的限制。它把Siamese结构里的特征提取模块改成两阶段的特征提取方法。 训练集:DAVIS 2017 测试集:OTB2015,UAV123,NfS,TrackingNet,GOT-10k,VOT2018,LTB35,LaSOT,OxUvA,DAVIS2017,YouTube-VOS
Ocean 不仅可以修正边界box预测的不精确性,而且还可以学习一个目标感知特征来提高匹配精度。 该网络结构由两部分组成:一个用于前景背景概率预测的目标感知分类网络和一个用于目标尺度估计的回归网络。 训练集:Youtube-BB,ImageNet VID,ImageNet DET,GOT-10k,COCO 测试集: VOT-2018,VOT-2019,OTB-100,GOT-10k,LaSOT
Ocean++ 提出了一个注意力检索网络对分割用来执行soft 空间限制。因为有了多分辨率和多层分割网络,有效抑制了背景杂波带来的负面影响。 引入了一种循环初始化策略来处理起始帧没有提供mask的视频,也是一个可以同时产生mask和BB的跟踪算法。 训练集:YouTube-VOS,COCO 测试集:VOT2020,DAVIS16&17

数据集总结

数据集名称介绍下载地址
(ImageNet)ILSVRC-VID The 2015 edition of ImageNet Large Scale Visual Recognition Challenge(ILSVRC). It contains 30 different classes of animals and vehicles. Training and validation sets together contain almost 4500 videos. 百度网盘 请输入提取码 (baidu.com) fj43 ImageNet Large Scale Visual Recognition Competition (ILSVRC) (image-net.org)
ILSVRC-DET Object detection dataset 链接:https://pan.baidu.com/s/1vsIVMOWvaIlgDIW40VJSoQ 提取码:Vw4Z
Youtube-BB The data set consists of 10.5 million human annotations on video frames. The data set contains 5.6 million tight bounding boxes around tracked objects in video frames. The data set consists of approximately 380,000 15-20s video segments extracted from 240,000 different publicly visible YouTube videos, automatically selected to feature objects in natural settings without editing or post-processing, with a recording quality often akin to that of a hand-held cell phone camera. All these video segments were human-annotated with high precision classifications and bounding boxes at 1 frame per second. The use of a cascade of increasingly precise human annotators ensures a measured label accuracy above 95% for every class and tight bounding boxes around the tracked objects. The objects tracked in the video segments belong to 23 different classes. https://research.google.com/youtube-bb/download.html
COCO 118K/5K for train/val. It can used for object segmentation, recognition in context, superpixel stuff segmentation, 330K images(>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image. 250000 people with keypoints. COCO - Common Objects in Context (cocodataset.org)
GOT-10k Generic Object Tracking Benchmark, A large, high-diversity, one-shot database for generic object tracking in the wild. The dataset contains more than 10,000 video segments of real-world moving objects and over 1.5 million manually labeled bounding boxes. The dataset is backboned by WordNet and it covers a majority of 560+ classes of real-world moving objects and 80+ classes of motion patterns. The dataset encourages the development of generic purposed trackers by following the one-shot rule that object classes between train and test sets are zero-overlapped. 它总共66G,比LaSOT小,比TrackingNet更小。但 目标类别很多,有额外的标注信息(bounding box / visible ratios等),丰富的运动轨迹信息 train: 10000个视频序列,563个目标类别,87种运动模式(e.g. 跑,游泳,滑雪,爬行,骑车,跳水,骑马,冲浪) test: 180个视频序列,84个目标类别,32种运动模式 GOT-10k: Generic Object Tracking Benchmark (aitestunion.com)
YouTube-VOS A Large-Scale Benchmark for Video Object Segmentation. It can be used for Semi-supervised Video Object Segmentation and Video Instance Segmentation. It has 4000+ high-resolution YouTube videos, 90+ semantic categories, 7800+ unique objects, 190k+ high-quality manual annotations, 340+ minutes duration. YouTube-VOS Dataset - YouTube-VOS (youtube-vos.org)
DAVIS-2016 In each video sequence a single instance is annotated. 有两个度量分割准确率的主要标准:区域相似度(Region Similarity):区域相似度是掩膜 M 和真值 G 之间的 Intersection over Union 函数.轮廓精确度(Contour Accuracy):将掩膜Mask看成一系列闭合轮廓的集合,并计算基于轮廓的F度量,即准确率和召回率的函数. 即轮廓精确度是对基于轮廓的准确率和召回率的F度量. DAVIS是一个像素完美匹配标注的数据集. 它的目标是重建真实的视频场景,如摄像机抖动、背景混杂、遮挡以及其它复杂状况. DAVIS构成包括50个序列总共3455标注帧,视频帧率为24fps,1080p分辨率。 DAVIS: Densely Annotated VIdeo Segmentation (davischallenge.org)
DAVIS-2017 In each video sequence multiple instances are annotated. Semi-supervised and Unsupervised refer to the level of human interaction at test time, not during the training phase. In Semi-supervised, better called human guided, the segmentation mask for the objects of interest is provided in the first frame. In Unsupervised, better called human non-guided, no human input is provided. DAVIS: Densely Annotated VIdeo Segmentation (davischallenge.org)
OTB-50 其对应视频序列为其网站的前50个视频序列,其中Skating因标注对象不同,可以看作两个视频序列 Visual Tracker Benchmark (hanyang.ac.kr)
OTB-2013 其视频序列为对应作者在CVPR2013发表文章Wu Y, Lim J, Yang M H. Online object tracking: A benchmark [C]// CVPR, 2013.中的51个视频序列  
OTB-100 OTB100与OTB2015相同, 其对应视频序列为作者发表文章Wu Y, Lim J, Yang M H. Object tracking benchmark [J]. TPAMI, 2015.中的100个视频序列。其中Skating、Jogging因标注对象不同,分别看作两个视频序列。  
OTB-2015 同上  
VOT-13 The dataset comprises 16 short sequences showing various objects in challenging backgrounds.The sequences were chosen from a large pool of sequences using a methodology based on clustering visual features of object and background so that those 16 sequences sample evenly well the existing pool. The sequences were annotated by the VOT committee using axis-aligned bounding boxes. https://www.votchallenge.net/vot2013/index.html
VOT-14 The dataset comprises 25 short sequences showing various objects in challenging backgrounds. Eight sequences are from last year’s VOT2013 challenge (bolt, bicycle, david, diving, gymnastics, hand, sunshade, woman). The new sequences show complementary objects and backgrounds, for example a fish underwater or a surfer riding a big wave. The sequences were chosen from a large pool of sequences including the ALOV dataset using a methodology based on clustering visual features of object and background so that those 25 sequences sample evenly well the existing pool. https://www.votchallenge.net/vot2014/index.html
VOT-15 The dataset comprises 60 short sequences showing various objects in challenging backgrounds. The sequences were chosen from a large pool of sequences including the ALOV dataset, OTB2 dataset, non-tracking datasets, Computer Vision Online, Professor Bob Fisher’s Image Database, Videezy, Center for Research in Computer Vision, University of Central Florida, USA, NYU Center for Genomics and Systems Biology, Data Wrangling, Open Access Directory and Learning and Recognition in Vision Group, INRIA, France. The VOT sequence selection protocol was applied to obtain a representative set of challenging sequences. The dataset is automatically downloaded by the evaluation kit when needed, there is no need to separately download the sequences for the challenge. https://www.votchallenge.net/vot2015/index.html
VOT-16 The VOT2016 and VOT-TIR2016 datasets are available through the VOT toolkit. Download the latest version of the VOT toolkit and select either the VOT2016 or the VOT-TIR2016 challenge. The correct dataset will be automatically downloaded. The sequences of VOT2016 dataset are the same sequences of VOT2015 dataset. However, the GT of VOT2016 is more accurate than the GT of VOT2015 dataset which has an impact on the evaluation. The VOT-TIR2016 dataset was updated with new sequences. https://www.votchallenge.net/vot2016/index.html
VOT-17 The VOT-TIR2017 dataset is the same as the VOT-TIR2016 dataset and is also available through the dataset. https://www.votchallenge.net/vot2017/
VOT-18 The VOT2018 and VOT-LT2018 datasets are available through the VOT toolkit. https://www.votchallenge.net/vot2018/
VOT-19 同上 https://www.votchallenge.net/vot2019/
VOT-2020 VOT2020对评价方式进行了一些修改,使得对目标跟踪的评价更加公正。VOT2020取消了重启,转而用intialization points来代替,每个序列中,在初始帧,结束帧以及每隔帧,都设置一个initialization point(anchor), 跟踪器从每个anchor处开始正向或反向运行。且旋转矩形框变成了mask https://www.votchallenge.net/vot2020/index.html
UAV123 103个视频序列,由专业的高级的无人机稳定可控的相机捕获,高度5~25meters;12个视频序列,由价格比较低的无人机不稳定的相机捕获,这些序列拥有低的质量和分辨率,还包含合理的噪声,并完全手工标注。第三,8个合成的视频序列,由我们提出的UAV模拟器。目标随着预先定义的轨迹移动,使用Unreal Game Engine rendered,同时自动标注在30fps,同时也可以获得目标mask/segmentation https://cemse.kaust.edu.sa/ivul/uav123
UAV20L UAV123中相对于初始帧的bbox大小和纵横比变化非常显著。此外,因为相机被固定在无人机上,所以相机可以随着物体而移动,导致了一个较长的跟踪序列,这也标志着与静态跟踪系统的不同)。因为航空跟踪都是长序列,所以我们把它切割成子序列,以确保数据集保持合理的困难程度。 其中有一个子集用于长序航空跟踪,叫做(UAV20L 同上
LaSOT We have compiled a large-scale dataset by gathering 1400 sequences with 3.52 million frames form YouTube under Creative Commonns licence. 它是一个long-term tracking ,这个数据集有1400个视频序列,每个视频平均有2512帧,最短的视频也有1000帧,最长的包含11397帧。分为70个类别,每个类别由二十个视频序列组成。更重要的是,它考虑了视觉外观和自然语言的联系,不仅标注了bbox而且增加了丰富的自然语言描述,旨在鼓励对于跟踪,结合视觉和自然语言特征的探索。这里提供1400个句子描述。 Large-scale: 1,550 sequences with more 3.87 millions frames High-quality: Manual annotation with careful inspection in each frame Category balance: 85 categories with each containing twenty (70 classes) or ten (15 classes) sequences Long-term tracking: An average video length of around 2,500 frames (i.e., 83 seconds) Comprehensive labeling: Providing both visual and lingual annotation for each sequence Flexible Evaluation Protocol: Evaluation under three different protocols: no constraint, full-overlap and one-shot LaSOT - Large-scale Single Object Tracking (stonybrook.edu)
TrackingNet 这个数据集采用一种方法将现有的大规模的目标检测的数据集利用到目标跟踪上(YouTubeBB稀疏标注)。也就是说,是视频目标检测YT-BB的子集,大约1.1T,收集了30643个视频片段,平均时长为16.6s。We provide more than 30K videos with more than 14 milliondense bounding box annotations. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset.(evaluating more than 20 trackers) (i)尽管目标跟踪取得了相当大的成功,但它仍然是一个挑战。当前的跟踪器在已经建立的数据集,如OTB、VOT基准上表现的很好,然而,这些数据集大部分是相对小的,并且不能完全代表在野外跟踪目标所遇到的挑战。 (ii)目前基于深度的跟踪器经常受限,一般使用目标分类的预训练模型或者使用目标检测的数据集训练,如ImageNet Videos,或者使用小型的数据集来训练,这些都是一些限制因素。 (iii)因为经典的跟踪器依赖手工特征并且因为存在的跟踪数据集小,当前用于训练和测试的数据之间并没有明确的区分。 基于这些,本文提出了TrackingNet数据集,它有以下优势: (1)大规模的训练集使得专门针对跟踪的深度设计的发展成为可能 (2)目标跟踪数据集的特殊性使得新的结构更关注连续帧之间的时间上下文信息。当前大规模的目标检测数据集没有及时提供密集标注的数据,也就是并不是每一帧都做标注 (3)TrackingNet通过在YouTube视频上采样来表示真实世界的场景 因此,TrackingNet视频包含了丰富的目标类别的分布,并且我们强制在训练和测试之间共享这些类别。最后我们在一个具有目标类别和运动的相似分布的隔离的测试集上进行评估跟踪器的性能。 贡献: TrackingNet是针对目标跟踪的第一个大规模的数据集。我们分析了其特征、属性、和独特性,当和其他数据集比起来时。另外我们还提供不同的技术从粗糙的标注生成密集的标注。 TrackingNet (tracking-net.org)
NfS 这个数据集包含了100个数据集,每个视频序列都是手工标注,9个挑战属性。We propose the first higher frame rate video dataset (called Need for Speed - NfS) and benchmark for visual object tracking. The dataset consists of 100 videos (380K frames) captured with now commonly available higher frame rate (240 FPS) cameras from real world scenarios. All frames are annotated with axis aligned bounding boxes and all sequences are manually labelled with nine visual attributes - such as occlusion, fast motion, background clutter, etc. Our benchmark provides an extensive evaluation of many recent and state-of-the-art trackers on higher frame rate sequences. We ranked each of these trackers according to their tracking accuracy and real-time performance. One of our surprising conclusions is that at higher frame rates, simple trackers such as correlation filters outperform complex methods based on deep networks. This suggests that for practical applications (such as in robotics or embedded vision), one needs to carefully tradeoff bandwidth constraints associated with higher frame rate acquisition, computational costs of real-time analysis, and the required application accuracy. Our dataset and benchmark allows for the first time (to our knowledge) systematic exploration of such issues. The Need for Speed Dataset (ci2cv.net)
LTB35 长跟踪数据集:LTB35共35个序列,平均每个序列目标消失12次,平均每40帧目标消失一次。 https://amoudgl.github.io/tlp/
OxUvA 长跟踪数据集:We introduce a new video dataset and benchmark to assess single-object tracking algorithms. Benchmarks have enabled great strides in the field of object tracking by defining standardized evaluations on large sets of diverse videos. However, these works have focused exclusively on sequences only few tens of seconds long, and where the target object is always present. Consequently, most researchers have designed methods tailored to this "short-term" scenario, which is poorly representative of practitioners' needs. Aiming to address this disparity, we compile a long-term, large-scale tracking dataset of sequences with average length greater than two minutes and with frequent target object disappearance. This dataset is the largest ever for single object tracking: it comprises 366 sequences for a total of 14 hours of video, 26 times more than the popular OTB-100. We assess the performance of several algorithms, considering both the ability to locate the target and to determine whether it is present or absent. Our goal is to offer the community a large and diverse benchmark to enable the design and evaluation of tracking methods ready to be used "in the wild". Long-term Tracking (oxuva.github.io)
原文地址:https://www.cnblogs.com/sariel-sakura/p/14086039.html