Kuratowski's and Wagner's theorems

w

https://en.wikipedia.org/wiki/Planar_graph

The Polish mathematician Kazimierz Kuratowski provided a characterization of planar graphs in terms of forbidden graphs, now known as Kuratowski's theorem:

finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K5 (the complete graph on five vertices) or K3,3 (complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).

subdivision of a graph results from inserting vertices into edges (for example, changing an edge •——• to •—•—•) zero or more times.


 
An example of a graph which doesn't have K5 or K3,3 as its subgraph. However, it has a subgraph that is homeomorphic to K3,3 and is therefore not planar.

Instead of considering subdivisions, Wagner's theorem deals with minors:

A finite graph is planar if and only if it does not have K5 or K3,3 as a minor.

 
An animation showing that the Petersen graph contains a minor isomorphic to the K3,3 graph

Klaus Wagner asked more generally whether any minor-closed class of graphs is determined by a finite set of "forbidden minors". This is now the Robertson–Seymour theorem, proved in a long series of papers. In the language of this theorem, K5 and K3,3 are the forbidden minors for the class of finite planar graphs.

https://zh.wikipedia.org/wiki/平面图_(图论)

波兰数学家卡齐米日·库拉托夫斯基提出的一类禁忌准则(指满足某种条件的图就一定无法具有某个性质)中,也包括了平面图的情况。他提出的一个定理说明:

一个有限图(顶点数和边数有限的图)是平面图当且仅当它并不包含一个是{displaystyle K_{5}}K_{5}(有五个顶点的完全图)或{displaystyle K_{3,3}}K_{{3,3}}(三个顶点的二部图)的分割的子图[1]

其中,一个图A是另一个图B分割是指:A是在B的基础上,在某些边的中间加上顶点:

Graph subdivision step1.svg Arrow green.svg Graph subdivision step2.svg

而得到的新的图。

用图的同胚理论来说,就是:一个有限图是平面图当且仅当这个图不包含任何同胚K_{5}K_{{3,3}}的子图。

这个定理的一般化是罗伯森-西摩定理

原文地址:https://www.cnblogs.com/rsapaper/p/6741023.html