深度之眼-统计学习方法-作业【1】

作业【1】

  1. 推导下述正态分布均值的极大似然估计和贝叶斯估计。
  • (1)

由于(x_i)的概率密度函数为:(f(x)=(2pisigma^2)^{-1/2}Exp{-frac{1}{2sigma^2}(x-mu)^2}),于是其似然函数为:

[egin{align} L=&prod_{i=1}^nleft[(2pisigma^2)^{-1/2}Exp{-frac{1}{2sigma^2}(x_i-mu)^2} ight]\ ln{L}=&ln{left[prod_{i=1}^n(2pisigma^2)^{-1/2}Exp{-frac{1}{2sigma^2}(x_i-mu)^2} ight]}\ =&sum_{i=1}^nlnleft[(2pisigma^2)^{-1/2} ight]+sum_{i=1}^nlnleft[Exp{-frac{1}{2sigma^2}(x_i-mu)^2} ight]\ =&-frac n2ln{(2pi)}-frac n2ln{(sigma^2)}-frac{1}{2sigma^2}sum_{i=1}^n(x_i-mu)^2 end{align} ]

为使(L)达到最大,只需是(ln{L})达到最大,故求偏导数方程(似然方程):

[egin{align} frac{partialln{L}}{partialmu}=&frac1{sigma^2}sum_{i=1}^n(x_i-mu)=0\ 解得,mu=&frac1nsum_{i=1}^nx_i end{align} ]

  • (2)

由题意:(x_isim N(mu,sigma^2)),而且已定下先验密度:(musim N(0, au^2))

于是我们列出先验密度与总体的密度函数

[h(mu)=(sqrt{2pi} au)^{-1}Exp[-frac{mu^2}{2 au^2}]\ f(x,mu)=(sqrt{2pi}sigma)^{-1}Exp[-frac{(x-mu)^2}{2sigma^2}] ]

((mu,x_1,dots,x_n))的联合密度为:

[egin{align} h(mu)prod_{i=1}^nf(x_i,mu)=&frac{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2]}{sqrt{2pi} au(sqrt{2pi}sigma)^n} end{align} ]

((x_1,dots,x_n))的边缘密度为:

[egin{align} p(x_1,dots,x_n)=&int h(mu)prod_{i=1}^nf(x_i,mu)dmu\ =&frac1{sqrt{2pi} au(sqrt{2pi}sigma)^n}int{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2]}dmu end{align} ]

其中

[egin{align} &int{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2]}dmu\ =&int{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n{x_i}^2-frac1{2sigma^2}nmu^2+frac1{sigma^2}nmuar{x}]}dmu end{align} ]

于是可以得到在给定((x_1,dots,x_n))的条件下,(mu)的条件密度为:

[egin{align} h(mu|x_1,dots,x_n)=&frac{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2]}{int{Exp[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2]}dmu} end{align} ]

观察可知分母与(mu)并没有关系,于是令(t=nar{X}/(n+1/ au^2),eta^2=frac1{(n+1/ au^2)})

[-frac1{2 au^2}mu^2-frac1{2sigma^2}sum_{i=1}^n(x_i-mu)^2=-frac{1}{2eta^2}(mu-t)^2+J ]

则:

[h(mu|x_1,dots,x_n)=I_1Exp[-frac1{2eta^2}(mu-t)^2] ]

因此(mu)的后验概率分布记为(N(t,eta^2)),即:

[ ilde{mu}=t=frac{n}{n+1/ au^2}ar{X} ]

原文地址:https://www.cnblogs.com/rrrrraulista/p/12378677.html