【3】从零认识中心极限思想-夜空中最亮的星

夜空中最亮的星

1- Dirichlet 积分

(I(a)=frac1piint_0^{+infty}frac{sin{at}}{t}dt),则有:

[I(a)= egin{cases} frac12& ext{a>0}\ 0&a=0\ -frac12&a<0 end{cases} ]

为了证明 (Dirichlet 积分),我们先证明(int_0^{+infty}frac{sin{x}}{x}dx=fracpi2)

[egin{align} 设 frac1x=&int_0^{+infty}e^{-xs}ds\ int_0^Tfrac{sin{x}}{x}dx=&int_0^{T}(sin{x}{int_0^{+infty}e^{-xs}ds)}dx\ =&int_0^{+infty}({int_0^{T}sin{x} e^{-xs}dx)}ds\ =&int_0^{+infty}[frac{1}{1+s^2}-frac{scdotsin T+Tcdotcos{T}}{s^2+T^2}e^{-s}]ds\ =&fracpi2-int_0^{+infty}frac{scdotsin T+Tcdotcos{T}}{s^2+T^2}e^{-s}ds\ (ecause&lim_{s oinfty}frac{scdotsin T+Tcdotcos{T}}{s^2+T^2}=0)\ =&fracpi2\ 则I(a)=&frac1piint_0^{+infty}frac{sin{at}}{t}dt\ =&acdotfrac1acdotfrac1piint_0^{+infty}frac{sin{at}}{at}d(at)\ =&frac1picdotfracpi2\ =&frac12 end{align} ]

此积分的重要意义是可以将符号转化为积分表达式!

3-特征函数

(X)是随机变量,(f(x))为概率密度函数,则特征函数为:

[varphi_X(t)=int_{-infty}^infty e^{itx}f(x)dx ]

由:(e^{itx}=sum_{n=0}^inftyfrac{(itx)^n}{n!}),则有:

[egin{align} varphi_X(t)=&int_{-infty}^infty e^{itx}f(x)dx\ =&int_{-infty}^infty (sum_{n=0}^inftyfrac{(itx)^n}{n!})f(x)dx\ =&sum_{n=0}^inftyint_{-infty}^infty(frac{(itx)^n}{n!})f(x)dx\ =&sum_{n=0}^inftyfrac{(it)^n}{n!}int_{-infty}^infty x^nf(x)dx\ =&sum_{n=0}^inftyfrac{(it)^n}{n!}E(x^n)\ varphi_X(t)=&e^{it}cdot E(x^n) end{align} ]

特征函数的反演公式:

[f(x)=frac1{2pi}int_{-infty}^{infty}e^{-itx}varphi(t)dt ]

4-特征函数性质

({f(x)=P(xleq X) | E(X)=mu,Var(X)=sigma^2}),其特征函数的本质为概率密度函数的傅里叶变换:

[varphi_X(t)=int_{-infty}^infty e^{itx}f(x)dx ]

而特征函数的 k 阶导数与 k 阶矩之间有密切联系:

[varphi^{(k)}_X(t)=[int_{-infty}^infty e^{itx}f(x)dx]^{(k)}=int_{-infty}^infty (e^{itx})^{(k)}f(x)dx =int_{-infty}^infty (ix)^{k}e^{itx}f(x)dx ]

于是,令(t=0):

[egin{align} varphi_X(0)&=int_{-infty}^infty f(x)dx=1\ varphi^{'}_X(0)&=int_{-infty}^infty (ix)e^0f(x) dx\ &=iint_{-infty}^infty xf(x) dx\ &=icdot E(x)\ varphi^{''}_X(0)&=int_{-infty}^infty (ix)^2e^0f(x) dx\ &=-int_{-infty}^infty x^2f(x) dx\ &=-(int_{-infty}^infty (x-mu)^2f(x) dx+int_{-infty}^infty(2mu)xf(x) dx-mu^2int_{-infty}^infty f(x) dx)\ &=-sigma^2-mu^2 end{align} ]

特征函数的乘法性质:

[varphi_{X+Y}(t)=varphi_{X}(t)varphi_{Y}(t) ]

(X hicksim N(0,1)),则其概率密度函数为:

[f(x)=frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}} ]

其对应的特征函数为:

[egin{align} varphi_X(t)=&int_{-infty}^infty e^{itx}(frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}})dx=e^{-frac{t^2}{2}} end{align} ]

关于对含参量反常积分可微性

[egin{align} varphi_X(t)=&int_{-infty}^infty e^{itx}(frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}})dx\ varphi'_X(t)= =&frac{1}{sqrt{2pi}}int_{-infty}^infty ixe^{-frac{x^2}{2}}e^{itx}dx\ =&frac{i}{sqrt{2pi}}int_{-infty}^infty e^{itx}d(-e^{-frac{x^2}{2}})\ =&frac{i}{sqrt{2pi}}e^{(itx-frac{x^2}{2})}|_{-infty}^{+infty} -frac{i}{sqrt{2pi}}int_{-infty}^infty -e^{-frac{x^2}{2}}d(e^{itx})\ =&frac{i}{sqrt{2pi}}e^{(itx-frac{x^2}{2})}|_{-infty}^{+infty} -frac{i}{sqrt{2pi}}int_{-infty}^infty ite^{itx}(-e^{-frac{x^2}{2}})dx\ =&-frac{t}{sqrt{2pi}}int_{-infty}^infty e^{itx}(e^{-frac{x^2}{2}})dx\ =&-tvarphi(t) end{align} ]

于是我们又获得一个重要的微分方程:

[frac{dvarphi(t)}{dt}=-tcdotvarphi(t) ]

变形得到:

[egin{align} frac{dvarphi(t)}{varphi(t)}&=-tdt\ intfrac{dvarphi(t)}{varphi(t)}&=-int tdt\ ln{varphi(t)}&=-frac{t^2}{2}+C\ varphi(t)&=C_0cdot e^{-frac{t^2}{2}}\ (ecausevarphi(0)=1,带入公式&得到C_0=e^0=1,于是有)\ varphi(t)&=e^{-frac{t^2}{2}}\ end{align} ]

也就是说当概率密度函数为(f(x)=frac{1}{sqrt{2pi}}e^{-frac{x^2}{2}})时,特征函数为:(varphi(t)=e^{-frac{t^2}{2}})

5-中心极限定理

(X_1,X_2,dots,X_n)为n个独立同分布随机变量,(X_i hicksim N(mu,sigma^2)),不妨设(Y_i=X_i-mu,)那么(Y_i hicksim N(0,sigma^2)),设(Y_i)的特征函数为(varphi(t))

设随机变量(eta=frac{Y_1+Y_2+dots+Y_n}{sigmasqrt{n}}),由(varphi_{X+Y}(t)=varphi_{X}(t)varphi_{Y}(t)),则(eta)的特征函数为:

[[varphi(frac{t}{sqrt{n}sigma})][varphi(frac{t}{sqrt{n}sigma})]dots[varphi(frac{t}{sqrt{n}sigma})]=[varphi(frac{t}{sqrt{n}sigma})]^n ]

(varphi(frac{t}{sqrt{n}sigma}))在0点(Taylor)展开,

[egin{align} varphi(frac{t}{sqrt{n}sigma}) &=varphi(0)+varphi'(0)(frac{t}{sqrt{n}sigma})+frac{varphi''(0)}{2!}(frac{t}{sqrt{n}sigma})^2+o((frac{t}{sqrt{n}sigma})^2)\ &=1+frac{imu t}{sqrt{n}sigma}-frac{(sigma^2+mu)t^2}{2nsigma^2}+o((frac{t}{sqrt{n}sigma})^2)\ &=1-frac{t^2}{2n}+o((frac{t}{sqrt{n}sigma})^2)\ herefore[varphi(frac{t}{sqrt{n}sigma})]^n&=[1-frac{t^2}{2n}+o((frac{t}{sqrt{n}sigma})^2)]^n\ &=[1-frac{t^2}{2n}+o((frac{t}{sqrt{n}sigma})^2)]^{(-frac{2n}{t^2})(-frac{t^2}{2})}\ lim_{n oinfty}[varphi(frac{t}{sqrt{n}sigma})]^n&=e^{-frac{t^2}{2}} end{align} ]

因此(eta hicksim N(0,1))服从标准正态分布。

原文地址:https://www.cnblogs.com/rrrrraulista/p/12310512.html