机器学习:IB1算法的weka源码详细解析(1NN)

  机器学习的1NN最近邻算法,在weka里叫IB1,是因为Instance Base  1 ,也就是只基于一个最近邻的实例的惰性学习算法。

  下面总结一下,weka中对IB1源码的学习总结。

  首先需要把 weka-src.jar 引入编译路径,否则无法跟踪源码。

  1)读取data数据,完成 IB1 分类器的调用,结果预测评估。为了后面的跟踪。

try {
            File file = new File("F:\tools/lib/data/contact-lenses.arff");

            ArffLoader loader = new ArffLoader();
            loader.setFile(file);
            ins = loader.getDataSet();

            // 在使用样本之前一定要首先设置instances的classIndex,否则在使用instances对象是会抛出异常
            ins.setClassIndex(ins.numAttributes() - 1);
            
            cfs = new IB1();
            cfs.buildClassifier(ins);
                        
            Instance testInst;
            Evaluation testingEvaluation = new Evaluation(ins);
            int length = ins.numInstances();
            for (int i = 0; i < length; i++) {
                testInst = ins.instance(i);
                // 通过这个方法来用每个测试样本测试分类器的效果
                double predictValue = cfs.classifyInstance(testInst);
                
                System.out.println(testInst.classValue()+"--"+predictValue);
            }

           // System.out.println("分类器的正确率:" + (1 - testingEvaluation.errorRate()));

        } catch (Exception e) {
            e.printStackTrace();
        }

2)ctrl 点击buildClassifier,进一步跟踪buildClassifier方法的源码,在IB1的类中重写了这个抽象方法,源码为:

public void buildClassifier(Instances instances) throws Exception {
    
    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();
    
    m_Train = new Instances(instances, 0, instances.numInstances());

    m_MinArray = new double [m_Train.numAttributes()];
    m_MaxArray = new double [m_Train.numAttributes()];
    for (int i = 0; i < m_Train.numAttributes(); i++) {
      m_MinArray[i] = m_MaxArray[i] = Double.NaN;
    }
    Enumeration enu = m_Train.enumerateInstances();
    while (enu.hasMoreElements()) {
      updateMinMax((Instance) enu.nextElement());
    }
  }

  (1)if是判断,IB1分类器不能处理属性是字符串和类别是数值型的样本;

  (2)if是判断,删除没有类标签的样本;

  (3)m_MinArray 和 m_MaxArray 分别保存最小和最大值,并且初始化double数组【样本个数】;

  (4)遍历所有的训练样本实例,求最小和最大值;继续跟踪updateMinMax方法;

  3)IB1类的updateMinMax方法的源码如下:

  private void updateMinMax(Instance instance) {
    
    for (int j = 0;j < m_Train.numAttributes(); j++) {
      if ((m_Train.attribute(j).isNumeric()) && (!instance.isMissing(j))) {
    if (Double.isNaN(m_MinArray[j])) {
      m_MinArray[j] = instance.value(j);
      m_MaxArray[j] = instance.value(j);
    } else {
      if (instance.value(j) < m_MinArray[j]) {
        m_MinArray[j] = instance.value(j);
      } else {
        if (instance.value(j) > m_MaxArray[j]) {
          m_MaxArray[j] = instance.value(j);
        }
      }
    }
      }
    }
  }

  (1)过滤掉属性不是数值型和缺失标签的实例;

  (2)若是isNaN,is not a number,是数值型的话,循环遍历样本的每一个属性,求出最大最小值;

  到此为止,训练了IB1模型(有人可能会问lazy的算法难道不是不需要训练模型吗?我认为build分类器是为了初始化 m_Train和求所有实例的每个属性的最大最小值,为了下一步求distance做准备)

下面介绍下预测源码:

  

  4)跟踪classifyInstance方法,源码如下:

 public double classifyInstance(Instance instance) throws Exception {
    
    if (m_Train.numInstances() == 0) {
      throw new Exception("No training instances!");
    }

    double distance, minDistance = Double.MAX_VALUE, classValue = 0;
    updateMinMax(instance);
    Enumeration enu = m_Train.enumerateInstances();
    while (enu.hasMoreElements()) {
      Instance trainInstance = (Instance) enu.nextElement();
      if (!trainInstance.classIsMissing()) {
    distance = distance(instance, trainInstance);
    if (distance < minDistance) {
      minDistance = distance;
      classValue = trainInstance.classValue();
    }
      }
    }

    return classValue;
  }

  (1)调用方法updateMinMax更新了加入测试实例后的最大最小值;

  (2)计算测试实例到每一个训练实例的距离,distance方法,并且保存距离最小的实例minDistance;

  5)跟踪classifyInstance方法,源码如下:

 private double distance(Instance first, Instance second) {
    
    double diff, distance = 0;

    for(int i = 0; i < m_Train.numAttributes(); i++) { 
      if (i == m_Train.classIndex()) {
    continue;
      }
      if (m_Train.attribute(i).isNominal()) {

    // If attribute is nominal
    if (first.isMissing(i) || second.isMissing(i) ||
        ((int)first.value(i) != (int)second.value(i))) {
      distance += 1;
    }
      } else {
    
    // If attribute is numeric
    if (first.isMissing(i) || second.isMissing(i)){
      if (first.isMissing(i) && second.isMissing(i)) {
        diff = 1;
      } else {
        if (second.isMissing(i)) {
          diff = norm(first.value(i), i);
        } else {
          diff = norm(second.value(i), i);
        }
        if (diff < 0.5) {
          diff = 1.0 - diff;
        }
      }
    } else {
      diff = norm(first.value(i), i) - norm(second.value(i), i);
    }
    distance += diff * diff;
      }
    }
    
    return distance;
  }

  对每一个属性遍历,计算数值属性距离的平方和,norm方法为规范化距离公式,为【0,1】的实数  

  6)跟踪norm规范化方法,源码如下:

  private double norm(double x,int i) {

    if (Double.isNaN(m_MinArray[i])
    || Utils.eq(m_MaxArray[i], m_MinArray[i])) {
      return 0;
    } else {
      return (x - m_MinArray[i]) / (m_MaxArray[i] - m_MinArray[i]);
    }
  }

  规范化距离:(x - m_MinArray[i]) / (m_MaxArray[i] - m_MinArray[i]);

  

 具体的算法伪代码,请查找最近邻分类器的论文,我就不贴出来了。

原文地址:https://www.cnblogs.com/rongyux/p/5371159.html