tensorflow 卷积/反卷积-池化/反池化操作详解

  • Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example.

In tf.nn, there are 4 closely related 2d conv functions:

  • tf.nn.conv2d
  • tf.nn.conv2d_backprop_filter
  • tf.nn.conv2d_backprop_input
  • tf.nn.conv2d_transpose
def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None):
  r"""Computes a 2-D convolution given 4-D `input` and `filter` tensors.

  Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
  and a filter / kernel tensor of shape
  `[filter_height, filter_width, in_channels, out_channels]`, this op
  performs the following:

  1. Flattens the filter to a 2-D matrix with shape
     `[filter_height * filter_width * in_channels, output_channels]`.
  2. Extracts image patches from the input tensor to form a *virtual*
     tensor of shape `[batch, out_height, out_width,
     filter_height * filter_width * in_channels]`.
  3. For each patch, right-multiplies the filter matrix and the image patch
     vector.

  In detail, with the default NHWC format,

      output[b, i, j, k] =
          sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                          filter[di, dj, q, k]

  Must have `strides[0] = strides[3] = 1`.  For the most common case of the same
  horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

Given out = conv2d(x, w) and the output gradient d_out:

  • Use tf.nn.conv2d_backprop_filter to compute the filter gradient d_w
  • Use tf.nn.conv2d_backprop_input to compute the filter gradient d_x
  • tf.nn.conv2d_backprop_input can be implemented by tf.nn.conv2d_transpose
  • All 4 functions above can be implemented by tf.nn.conv2d
  • Actually, use TF's autodiff is the fastest way to compute gradients

Long Answer

Now, let's give an actual working code example of how to use the 4 functions above to compute d_x and d_w given d_out. This shows how conv2dconv2d_backprop_filterconv2d_backprop_input, and conv2d_transpose are related to each other. Please find the full scripts here.

Computing d_x in 4 different ways:

# Method 1: TF's autodiff
d_x = tf.gradients(f, x)[0]

# Method 2: manually using conv2d
d_x_manual = tf.nn.conv2d(input=tf_pad_to_full_conv2d(d_out, w_size),
                          filter=tf_rot180(w),
                          strides=strides,
                          padding='VALID')

# Method 3: conv2d_backprop_input
d_x_backprop_input = tf.nn.conv2d_backprop_input(input_sizes=x_shape,
                                                 filter=w,
                                                 out_backprop=d_out,
                                                 strides=strides,
                                                 padding='VALID')

# Method 4: conv2d_transpose
d_x_transpose = tf.nn.conv2d_transpose(value=d_out,
                                       filter=w,
                                       output_shape=x_shape,
                                       strides=strides,
                                       padding='VALID')

Computing d_w in 3 different ways:

# Method 1: TF's autodiff
d_w = tf.gradients(f, w)[0]

# Method 2: manually using conv2d
d_w_manual = tf_NHWC_to_HWIO(tf.nn.conv2d(input=x,
                                          filter=tf_NHWC_to_HWIO(d_out),
                                          strides=strides,
                                          padding='VALID'))

# Method 3: conv2d_backprop_filter
d_w_backprop_filter = tf.nn.conv2d_backprop_filter(input=x,
                                                   filter_sizes=w_shape,
                                                   out_backprop=d_out,
                                                   strides=strides,
                                                   padding='VALID')

Please see the full scripts for the implementation of tf_rot180tf_pad_to_full_conv2dtf_NHWC_to_HWIO. In the scripts, we check that the final output values of different methods are the same; a numpy implementation is also available.

原文地址:https://www.cnblogs.com/ranjiewen/p/9368359.html