Solution -「多校联训」消失的运算符

(mathcal{Description})

  Link.

  给定长度为 (n) 的合法表达式序列 (s),其中数字仅有一位正数,运算符仅有 - 作为占位。求将其中恰好 (k)- 替换为 +,其余 - 替换为 * 的所有方案得到的表达式结果之和。答案模 ((10^9+7))

  (nle10^5)(可能有无意义的多层括号嵌套),- 的总数 (mle2.5 imes10^3)

(mathcal{Solution})

  复杂表达式问题,应当考虑按匹配括号建树,并在树上 DP。

  考虑树上结点 (u) 以及它的孩子们 (v_1,cdots,v_c),它们代表了形如 u=(v1)-(v2)-...-(vc) 的表达式。令 (f_{u,i}) 表示 (u) 从左到右合并了一些孩子,用了 (i)+ 时,所有表达式结果之和;(g_i) 表示 (u) 从左到右合并了一些孩子,用了 (i)+ 时,所有后缀乘积之和。设已合并的孩子们共有 (s_u)+,现欲合并孩子 (v),其有 (s_v)+,转移分 +, * 讨论:

[egin{aligned}f'_{u,i+j+1}&longleftarrow^+inom{s_v}{j}f_{u,i}+inom{su}{i}f_{v,j},\f'_{u,i+j}&longleftarrow^+inom{s_v}{j}(f_{u,i}-g_i)+g_if_{v,i},\g'_{i+j+1}&longleftarrow^+inom{s_u}{i}f_{v,j},\g'_{i+j}&longleftarrow^+g_if_{v,j},\s_u&longleftarrow^+s_v+1.end{aligned} ]

  转移复杂度是树上背包,总复杂度 (mathcal O(n+m^2))

(mathcal{Code})

/*~Rainybunny~*/

#pragma GCC optimize( "Ofast" )

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

const int MAXN = 2e5, MAXM = 5e3, MOD = 1e9 + 7;
int n, k, m, node, siz[MAXM + 5], mtc[MAXN * 3 + 5];
int comb[MAXM + 5][MAXM + 5], f[MAXM + 5][MAXM + 5];
char str[MAXN * 3 + 5], tmps[MAXN + 5];

inline int imin( const int u, const int v ) { return u < v ? u : v; }
inline int imax( const int u, const int v ) { return u < v ? v : u; }
inline int mul( const int u, const int v ) { return 1ll * u * v % MOD; }
inline int sub( int u, const int v ) { return ( u -= v ) < 0 ? u + MOD : u; }
inline int add( int u, const int v ) { return ( u += v ) < MOD ? u : u - MOD; }
inline void addeq( int& u, const int v ) { ( u += v ) >= MOD && ( u -= MOD ); }

inline void init() {
	int len = n; n = 0;
	rep ( i, 1, len ) {
		if ( '0' <= tmps[i] && tmps[i] <= '9' ) {
			str[++n] = '(', str[++n] = tmps[i], str[++n] = ')';
		} else {
			str[++n] = tmps[i];
			m += tmps[i] == '-';
		}
	}
	
	static int stk[MAXN * 3 + 5]; int top = 0;
	rep ( i, 1, n ) {
		if ( str[i] == '(' ) stk[++top] = i;
		else if ( str[i] == ')' ) mtc[mtc[stk[top]] = i] = stk[top], --top;
	}
	
	comb[0][0] = 1;
	rep ( i, 1, m ) {
		comb[i][0] = 1;
		rep ( j, 1, i ) comb[i][j] = add( comb[i - 1][j - 1], comb[i - 1][j] );
	}
}

inline int solve( int l, int r ) {
	if ( mtc[l] == r ) return solve( l + 1, r - 1 );
	int u = ++node, *fu = f[u];
	if ( l == r ) return fu[0] = str[l] ^ '0', u;
	
	int g[MAXM + 5];
	for ( int p = l, v, fir = true; p < r; ) {
		if ( str[p] != '(' ) { ++p; continue; }
		const int *fv = f[v = solve( p, mtc[p] )]; p = mtc[p] + 1;
		
		if ( fir ) {
			rep ( i, 0, siz[v] ) fu[i] = g[i] = fv[i];
			siz[u] = siz[v], fir = false;
			continue;
		}
		
		static int tmp[MAXM + 5];
		rep ( i, 0, siz[u] ) rep ( j, 0, siz[v] ) {
			addeq( tmp[i + j + 1], add( mul( fu[i], comb[siz[v]][j] ),
			  mul( fv[j], comb[siz[u]][i] ) ) );
			addeq( tmp[i + j], add( mul( sub( fu[i], g[i] ),
			  comb[siz[v]][j] ), mul( g[i], fv[j] ) ) );
		}
		rep ( i, 0, siz[u] + siz[v] + 1 ) fu[i] = tmp[i], tmp[i] = 0;
		rep ( i, 0, siz[u] ) rep ( j, 0, siz[v] ) {
			addeq( tmp[i + j], mul( g[i], fv[j] ) );
			addeq( tmp[i + j + 1], mul( comb[siz[u]][i], fv[j] ) );
		}
		rep ( i, 0, siz[u] + siz[v] + 1 ) g[i] = tmp[i], tmp[i] = 0;
		siz[u] += siz[v] + 1;
	}
	return u;
}

int main() {
	freopen( "operator.in", "r", stdin );
	freopen( "operator.out", "w", stdout );
	
	scanf( "%d %d %s", &n, &k, tmps + 1 );
	init(); //, fprintf( stderr, "%s
", str + 1 );
	printf( "%d
", f[solve( 1, n )][k] );
	return 0;
}
原文地址:https://www.cnblogs.com/rainybunny/p/15367448.html