CNN网络结构-VGG

背景

2014年,VGG分别在定位和分类问题中获得了第一和第二名,在其他数据集上也实现了最好的结果。

结构

VGGNet探索了神经网络的深度与性能之间的关系,表明在结构相似的情况下,网络越深性能越好。

模型中大量使用3*3的卷积核的串联,构造出16到19层的网络。

2个3*3的卷积核的串联相当于5*5的卷积核。 
3个3*3的卷积核的串联相当于7*7的卷积核。

其意义在于7*7所需要的参数为49,3个3*3的卷积核参数为27个,几乎减少了一半。

在C中还是用了1*1的卷积核,而且输出通道和输入通道数并没有发生改变,只是起到了线性变换的作用,其意义在VGG中其实意义不大。

结构图如下:

实现

    data = mx.symbol.Variable(name="data")
    # group 1
    conv1_1 = mx.symbol.Convolution(data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
    relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
    pool1 = mx.symbol.Pooling(
        data=relu1_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool1")
    # group 2
    conv2_1 = mx.symbol.Convolution(
        data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
    relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
    pool2 = mx.symbol.Pooling(
        data=relu2_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool2")
    # group 3
    conv3_1 = mx.symbol.Convolution(
        data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
    relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
    conv3_2 = mx.symbol.Convolution(
        data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
    relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
    pool3 = mx.symbol.Pooling(
        data=relu3_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool3")
    # group 4
    conv4_1 = mx.symbol.Convolution(
        data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
    relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
    conv4_2 = mx.symbol.Convolution(
        data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
    relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
    pool4 = mx.symbol.Pooling(
        data=relu4_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool4")
    # group 5
    conv5_1 = mx.symbol.Convolution(
        data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
    relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
    conv5_2 = mx.symbol.Convolution(
        data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
    relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="conv1_2")
    pool5 = mx.symbol.Pooling(
        data=relu5_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool5")
    # group 6
    flatten = mx.symbol.Flatten(data=pool5, name="flatten")
    fc6 = mx.symbol.FullyConnected(data=flatten, num_hidden=4096, name="fc6")
    relu6 = mx.symbol.Activation(data=fc6, act_type="relu", name="relu6")
    drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
    # group 7
    fc7 = mx.symbol.FullyConnected(data=drop6, num_hidden=4096, name="fc7")
    relu7 = mx.symbol.Activation(data=fc7, act_type="relu", name="relu7")
    drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")
    # output
    fc8 = mx.symbol.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8")
    softmax = mx.symbol.SoftmaxOutput(data=fc8, name='softmax')
    return softmax
原文地址:https://www.cnblogs.com/qw12/p/8471209.html