[SDOI2015] 约数个数和


Portal

考虑这样一个式子:

[d(ij) = sum_{x | i}sum_{y | j} [x ot y] ]

怎么证明? 一开始我们一定会想到$$d(ij) = sum_{x | i} sum_{y | j} 1 $$ 但这样会计算重复. 于是我们考虑:

[d(ij) = sum_{x | i}sum_{frac{j}{y} | j}1 ]

这样每个因数就变成$ frac{xj}{y} $, 如果x和y不互质. 那么就会有 $ frac{(xj)p}{yp} == frac{xj}{y} $

如果xp,yp同时是i, j的因数那就会算重复.

所以一定要求此二者互质.

相应的:

[sigma(ij) = sum_{x | i}sum_{y | j} [x ot y]x frac{}{} frac{j}{y} ]


那么我们可以开始化式子了!!

[Ans = sum_{i}sum_{j} sum_{x | i}sum_{y | j}[(x, y) == 1] \ = sum_{x} sum_{y}[(x, y) == 1]sum_{i} sum_{j} [x | i][y | j] \ = sum_{x} sum_{y}sum_{d | (x, y)} mu(d) lfloorfrac{n}{x} floorlfloorfrac{m}{y} floor\ = sum_{d} mu(d) sum_{x}sum_{y}[d | x][d | y] lfloorfrac{n}{x} floorlfloorfrac{m}{y} floor \ = sum_{d} mu(d) sum_{x}^{n / d}lfloorfrac{n}{xd} floorsum_{y}^{m / d}lfloorfrac{m}{yd} floor\ ]

(F(n) = sum_{i = 1}^{n} sigma_0(i))

那么有

[Ans = sum_{d} mu(d) F(frac{n}{d})F(frac{m}{d}) ]

然后线性筛/杜教筛Min25筛洲阁筛筛以下约数个数的前缀和就可以做了.

Codes

#include<bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef long double LD;
int read() {
    char ch = getchar();
    int x = 0, flag = 1;
    for (;!isdigit(ch); ch = getchar()) if (ch == '-') flag *= -1;
    for (;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
    return x * flag;
}
void write(int x) {
    if (x < 0) putchar('-'), x = -x;
    if (x >= 10) write(x / 10);
    putchar(x % 10 + 48);
}

const int Maxn = 50009;
int prime[Maxn], isnprime[Maxn], mu[Maxn], prefixMu[Maxn], tot, low[Maxn];
LL sigma0[Maxn];
void linearSieve() {
	mu[1] = 1; sigma0[1] = 1;
	rep (i, 2, Maxn - 1) {
		if (!isnprime[i]) mu[i] = -1, prime[++tot] = i, low[i] = i, sigma0[i] = 2;
		for (int k, j = 1; j <= tot && (k = prime[j] * i) < Maxn; ++j) {
			isnprime[k] = 1;
			if (i % prime[j] == 0) {
				mu[k] = 0; low[k] = low[i] * prime[j];
				sigma0[k] = (low[i] == i) ? (sigma0[i] + 1) : (sigma0[k / low[k]] * sigma0[low[k]]);
				break;
			} else {
				mu[k] = -mu[i]; low[k] = prime[j];
				sigma0[k] = sigma0[i] * sigma0[prime[j]];
			}
		}
	}
	rep (i, 1, Maxn - 1) {
		prefixMu[i] = prefixMu[i - 1] + mu[i];
		sigma0[i] += sigma0[i - 1];
	}
}

void init() { linearSieve(); }

void solve() {
	int T = read();
	while (T--) {
		int n = read(), m = read();
		LL ans = 0; int Limit = min(n, m);
		for (int l = 1, r; l <= Limit; l = r + 1) {
			r = min(Limit, min(n / (n / l), m / (m / l)));
			ans += (prefixMu[r] - prefixMu[l - 1] * 1ll) * sigma0[n / l] * sigma0[m / l];
		}
		printf("%lld
", ans);
	}
}

int main() {
	freopen("BZOJ3994.in", "r", stdin);
	freopen("BZOJ3994.out", "w", stdout);

	init();
	solve();

#ifdef Qrsikno
    debug("
Running time: %.3lf(s)
", clock() * 1.0 / CLOCKS_PER_SEC);
#endif
    return 0;
}

原文地址:https://www.cnblogs.com/qrsikno/p/10197823.html