LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

http://lightoj.com/volume_showproblem.php?problem=1236

Pairs Forming LCM
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Find the result of the following code:

long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        for( int j = i; j <= n; j++ )
           if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Sample Output

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

题目大意:给一个数n,求使得lcm(i, j) = n, (i, j)这样的数对有多少种,其中i<=j;(lcm(i, j)表示i,j的最小公倍数)

前几天才写得唯一分离定理的,然而并没有想到这道题与唯一分离定理有什么关联(问了学姐才知道),还是定理没有理解透彻,唉~

求约数,倍数,质因数,gcd,lcm,都应该想到这个定理的

算术基本定理(唯一分离定理)的内涵用一句话来概括就是:

一个数的每一个质因子的不同幂对应不同的因数。

 我们可以利用唯一分离定理:
n = p1^x1*p2^x2*p3^x3*...*ps^xs;
n = lcm(i, j);
假设n = p1^x1;那么i、j有两种:
(1)i = p1^x1,则 j = p1^m(m属于[0,x1]),  这样(i,j)共有  (x1 + 1)种
(2)j = p1^x1,则 i = p1^n(n属于[0,x1]),  这样(i,j)共有  (x1 + 1)种
那么总共就有ans = 2*(x1 + 1)种,又因为当m = n时(1)和(2)这两种情况是一样的,所以最终总情况ans-1,即ans = 2*(x1 + 1) - 1 = 2*x1 + 1
当n = p1^x1*p2^x2*p3^x3*...*ps^xs时总情况ans = (2*x1+1)*(2*x2+1)*(2*x3+1)*...*(2*xs+1);
上面求的ans是i>j和i<j都可以即(i,j)和(j,i)重复了(除了(n,n)只算了一种),而题中求的是i<=j,所以ans /= 2;
还有一种(n,n)的情况得加上
 
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>

using namespace std;
const int N = 1e7 + 10;
typedef long long ll;

int prime[700010], k;
bool Isprime[N];

void Prime()
{
    k = 0;
    memset(Isprime, true, sizeof(Isprime));
    Isprime[1] = false;
    for(int i = 2 ; i < N ; i++)
    {
        if(Isprime[i])
        {
            prime[k++] = i;
            for(int j = 2 ; i * j < N ;j++)
                Isprime[i * j] = false;
        }
    }
}//素数筛选

int main()
{
    int t, p = 0;
    ll n;
    Prime();
    scanf("%d", &t);
    while(t--)
    {
        p++;
        int x;
        ll ans = 1;
        scanf("%lld", &n);
        for(int i = 0 ; i < k && prime[i] * prime[i] <= n; i++)
        {
            x = 0;
            if(n % prime[i] == 0)
            {
                while(n % prime[i] == 0)
                {
                    x++;
                    n /= prime[i];
                }
            }
            ans *= (2 * x + 1);
        }
        if(n > 1)
            ans *= 3;
        printf("Case %d: %lld
", p, ans / 2 + 1);
    }
    return 0;
}
原文地址:https://www.cnblogs.com/qq2424260747/p/4936943.html