AsyncTask Note

Class Overview

AsyncTask enables proper and easy use of the UI thread. This class allows to perform background operations and publish results on the UI thread without having to manipulate threads and/or handlers.

AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most.) If you need to keep threads running for long periods of time, it is highly recommended you use the various APIs provided by the java.util.concurrent pacakge such as Executor, ThreadPoolExecutor and FutureTask.

The 4 steps

When an asynchronous task is executed, the task goes through 4 steps:

  1. onPreExecute(), invoked on the UI thread before the task is executed. This step is normally used to setup the task, for instance by showing a progress bar in the user interface.
  2. doInBackground(Params...), invoked on the background thread immediately after onPreExecute() finishes executing. This step is used to perform background computation that can take a long time. The parameters of the asynchronous task are passed to this step. The result of the computation must be returned by this step and will be passed back to the last step. This step can also use publishProgress(Progress...) to publish one or more units of progress. These values are published on the UI thread, in the onProgressUpdate(Progress...) step.
  3. onProgressUpdate(Progress...), invoked on the UI thread after a call to publishProgress(Progress...). The timing of the execution is undefined. This method is used to display any form of progress in the user interface while the background computation is still executing. For instance, it can be used to animate a progress bar or show logs in a text field.
  4. onPostExecute(Result), invoked on the UI thread after the background computation finishes. The result of the background computation is passed to this step as a parameter.

Cancelling a task

  A task can be cancelled at any time by invoking cancel(boolean). Invoking this method will cause subsequent calls to isCancelled() to return true. After invoking this method, onCancelled(Object), instead of onPostExecute(Object) will be invoked after doInBackground(Object[]) returns. To ensure that a task is cancelled as quickly as possible, you should always check the return value of isCancelled() periodically from doInBackground(Object[]), if possible (inside a loop for instance.)

Threading rules

There are a few threading rules that must be followed for this class to work properly:

  • The AsyncTask class must be loaded on the UI thread. This is done automatically as of JELLY_BEAN.
  • The task instance must be created on the UI thread.
  • execute(Params...) must be invoked on the UI thread.
  • Do not call onPreExecute(), onPostExecute(Result), doInBackground(Params...), onProgressUpdate(Progress...) manually.
  • The task can be executed only once (an exception will be thrown if a second execution is attempted.)

Order of execution

  When first introduced, AsyncTasks were executed serially on a single background thread. Starting with DONUT, this was changed to a pool of threads allowing multiple tasks to operate in parallel. Starting with HONEYCOMB, tasks are executed on a single thread to avoid common application errors caused by parallel execution.

  If you truly want parallel execution, you can invoke executeOnExecutor(java.util.concurrent.Executor, Object[]) with THREAD_POOL_EXECUTOR.

  Executor: THREAD_POOL_EXECUTOR, SERIAL_EXECUTOR.

This method is typically used with THREAD_POOL_EXECUTOR to allow multiple tasks to run in parallel on a pool of threads managed by AsyncTask, however you can also use your own Executor for custom behavior.

Warning: Allowing multiple tasks to run in parallel from a thread pool is generally not what one wants, because the order of their operation is not defined. For example, if these tasks are used to modify any state in common (such as writing a file due to a button click), there are no guarantees on the order of the modifications. Without careful work it is possible in rare cases for the newer version of the data to be over-written by an older one, leading to obscure data loss and stability issues. Such changes are best executed in serial; to guarantee such work is serialized regardless of platform version you can use this function with SERIAL_EXECUTOR.

原文地址:https://www.cnblogs.com/qiengo/p/3020874.html