Learning Memory-guided Normality代码学习笔记

Learning Memory-guided Normality代码学习笔记

记忆模块核心

Memory部分的核心在于以下定义Memory类的部分。

class Memory(nn.Module):
    def __init__(self, memory_size, feature_dim, key_dim,  temp_update, temp_gather):
        super(Memory, self).__init__()
        # Constants
        self.memory_size = memory_size
        self.feature_dim = feature_dim
        self.key_dim = key_dim
        self.temp_update = temp_update
        self.temp_gather = temp_gather
        
    def hard_neg_mem(self, mem, i):
        similarity = torch.matmul(mem,torch.t(self.keys_var))
        similarity[:,i] = -1
        _, max_idx = torch.topk(similarity, 1, dim=1)
        
        
        return self.keys_var[max_idx]
    
    def random_pick_memory(self, mem, max_indices):
        
        m, d = mem.size()
        output = []
        for i in range(m):
            flattened_indices = (max_indices==i).nonzero()
            a, _ = flattened_indices.size()
            if a != 0:
                number = np.random.choice(a, 1)
                output.append(flattened_indices[number, 0])
            else:
                output.append(-1)
            
        return torch.tensor(output)
    
    def get_update_query(self, mem, max_indices, update_indices, score, query, train):
        
        m, d = mem.size()
        if train:
            query_update = torch.zeros((m,d)).cuda()
            # random_update = torch.zeros((m,d)).cuda()
            for i in range(m):
                idx = torch.nonzero(max_indices.squeeze(1)==i)
                a, _ = idx.size()
                if a != 0:
                    query_update[i] = torch.sum(((score[idx,i] / torch.max(score[:,i])) *query[idx].squeeze(1)), dim=0)
                else:
                    query_update[i] = 0 
        
       
            return query_update 
    
        else:
            query_update = torch.zeros((m,d)).cuda()
            for i in range(m):
                idx = torch.nonzero(max_indices.squeeze(1)==i)
                a, _ = idx.size()
                if a != 0:
                    query_update[i] = torch.sum(((score[idx,i] / torch.max(score[:,i])) *query[idx].squeeze(1)), dim=0)
                else:
                    query_update[i] = 0 
            
            return query_update

    def get_score(self, mem, query):
        bs, h,w,d = query.size()
        m, d = mem.size()
        
        score = torch.matmul(query, torch.t(mem))# b X h X w X m
        score = score.view(bs*h*w, m)# (b X h X w) X m
        
        score_query = F.softmax(score, dim=0)
        score_memory = F.softmax(score,dim=1)
        
        return score_query, score_memory
    
    def forward(self, query, keys, train=True):

        batch_size, dims,h,w = query.size() # b X d X h X w
        query = F.normalize(query, dim=1)
        query = query.permute(0,2,3,1) # b X h X w X d
        
        #train
        if train:
            #losses
            separateness_loss, compactness_loss = self.gather_loss(query,keys, train)
            # read
            updated_query, softmax_score_query,softmax_score_memory = self.read(query, keys)
            #update
            updated_memory = self.update(query, keys, train)
            
            return updated_query, updated_memory, softmax_score_query, softmax_score_memory, separateness_loss, compactness_loss
        
        #test
        else:
            # loss
            compactness_loss, query_re, top1_keys, keys_ind = self.gather_loss(query,keys, train)
            
            # read
            updated_query, softmax_score_query,softmax_score_memory = self.read(query, keys)
            
            #update
            updated_memory = keys
                
               
            return updated_query, updated_memory, softmax_score_query, softmax_score_memory, query_re, top1_keys,keys_ind, compactness_loss
        
        
    
    def update(self, query, keys,train):
        
        batch_size, h,w,dims = query.size() # b X h X w X d 
        
        softmax_score_query, softmax_score_memory = self.get_score(keys, query)
        
        query_reshape = query.contiguous().view(batch_size*h*w, dims)
        
        _, gathering_indices = torch.topk(softmax_score_memory, 1, dim=1)
        _, updating_indices = torch.topk(softmax_score_query, 1, dim=0)
        
        if train:
             
            query_update = self.get_update_query(keys, gathering_indices, updating_indices, softmax_score_query, query_reshape,train)
            updated_memory = F.normalize(query_update + keys, dim=1)
        
        else:
            query_update = self.get_update_query(keys, gathering_indices, updating_indices, softmax_score_query, query_reshape, train)
            updated_memory = F.normalize(query_update + keys, dim=1)
        
        return updated_memory.detach()
        
        
    def pointwise_gather_loss(self, query_reshape, keys, gathering_indices, train):
        n,dims = query_reshape.size() # (b X h X w) X d
        loss_mse = torch.nn.MSELoss(reduction='none')
        
        pointwise_loss = loss_mse(query_reshape, keys[gathering_indices].squeeze(1).detach())
                
        return pointwise_loss
        
    def gather_loss(self,query, keys, train):
        batch_size, h,w,dims = query.size() # b X h X w X d
        if train:
            loss = torch.nn.TripletMarginLoss(margin=1.0)
            loss_mse = torch.nn.MSELoss()
            softmax_score_query, softmax_score_memory = self.get_score(keys, query)
        
            query_reshape = query.contiguous().view(batch_size*h*w, dims)
        
            _, gathering_indices = torch.topk(softmax_score_memory, 2, dim=1)
        
            #1st, 2nd closest memories
            pos = keys[gathering_indices[:,0]]
            neg = keys[gathering_indices[:,1]]
            top1_loss = loss_mse(query_reshape, pos.detach())
            gathering_loss = loss(query_reshape,pos.detach(), neg.detach())
            
            return gathering_loss, top1_loss
        
            
        else:
            loss_mse = torch.nn.MSELoss()
        
            softmax_score_query, softmax_score_memory = self.get_score(keys, query)
        
            query_reshape = query.contiguous().view(batch_size*h*w, dims)
        
            _, gathering_indices = torch.topk(softmax_score_memory, 1, dim=1)
        
            gathering_loss = loss_mse(query_reshape, keys[gathering_indices].squeeze(1).detach())
            
            return gathering_loss, query_reshape, keys[gathering_indices].squeeze(1).detach(), gathering_indices[:,0]
            
        
        
    
    def read(self, query, updated_memory):
        batch_size, h,w,dims = query.size() # b X h X w X d

        softmax_score_query, softmax_score_memory = self.get_score(updated_memory, query)

        query_reshape = query.contiguous().view(batch_size*h*w, dims)
        
        concat_memory = torch.matmul(softmax_score_memory.detach(), updated_memory) # (b X h X w) X d
        updated_query = torch.cat((query_reshape, concat_memory), dim = 1) # (b X h X w) X 2d
        updated_query = updated_query.view(batch_size, h, w, 2*dims)
        updated_query = updated_query.permute(0,3,1,2)
        
        return updated_query, softmax_score_query, softmax_score_memory
    

Update过程

调用get_update_query(self, mem, max_indices, update_indices, score, query, train)函数计算(query\_ dpdate= sum_{k in U_{t}^M} v_t^{'k,m}q_t^k)

然后计算(f(P^m+query_dpdate))

文中对f的描述为L2正则。

看一下get_update_query函数的定义:

    def get_update_query(self, mem, max_indices, update_indices, score, query, train):
        
        m, d = mem.size()
        if train:
            query_update = torch.zeros((m,d)).cuda()
            # random_update = torch.zeros((m,d)).cuda()
            for i in range(m):
                idx = torch.nonzero(max_indices.squeeze(1)==i)
                a, _ = idx.size()
                if a != 0:
                    query_update[i] = torch.sum(((score[idx,i] / torch.max(score[:,i])) *query[idx].squeeze(1)), dim=0)
                else:
                    query_update[i] = 0 
        
       
            return query_update 
    
        else:
            query_update = torch.zeros((m,d)).cuda()
            for i in range(m):
                idx = torch.nonzero(max_indices.squeeze(1)==i)
                a, _ = idx.size()
                if a != 0:
                    query_update[i] = torch.sum(((score[idx,i] / torch.max(score[:,i])) *query[idx].squeeze(1)), dim=0)
                else:
                    query_update[i] = 0 
            
            return query_update

在定义中,我们需要看到(v_t^{'k,m})的计算。代码是通过(score[idx,i] / torch.max(score[:,i])实现的,进一步,我们需要查看(v_t^{k,m})的计算过程。这个参数与(w)一样是权重,文中通过get_score函数计算权重,如下为此函数的定义:

    def get_score(self, mem, query):
        #计算权重$w_t^{k,m}$
        bs, h,w,d = query.size()
        m, d = mem.size()
        
        score = torch.matmul(query, torch.t(mem))# b X h X w X m
        score = score.view(bs*h*w, m)# (b X h X w) X m
        
        score_query = F.softmax(score, dim=0)
        score_memory = F.softmax(score,dim=1)
        
        return score_query, score_memory

实现了文献中的权重计算

image-20201202104454789

Read过程

def read(self, query, updated_memory):
        #Read部分
        batch_size, h,w,dims = query.size() # b X h X w X d

        softmax_score_query, softmax_score_memory = self.get_score(updated_memory, query)

        query_reshape = query.contiguous().view(batch_size*h*w, dims)
        
        concat_memory = torch.matmul(softmax_score_memory.detach(), updated_memory) # (b X h X w) X d
        # 权重和memory获得加权均值
        updated_query = torch.cat((query_reshape, concat_memory), dim = 1) # (b X h X w) X 2d
        # 进行拼接
        updated_query = updated_query.view(batch_size, h, w, 2*dims)
        updated_query = updated_query.permute(0,3,1,2)
        
        return updated_query, softmax_score_query, softmax_score_memory
    

核心部分在代码中给出了注释。

forward过程

separateness_loss, compactness_loss = self.gather_loss(query,keys, train)
# read
updated_query, softmax_score_query,softmax_score_memory = self.read(query, keys)
#update
updated_memory = self.update(query, keys, train)

return updated_query, updated_memory, softmax_score_query, softmax_score_memory, separateness_loss, compactness_loss

分别调用update函数和read函数

需要说明损失函数的定义,(L = L_{rec} + lambda _cL_{compact}+ lambda _sL_{separate})

代码中通过gather_loss函数实现。

def gather_loss(self,query, keys, train):
    batch_size, h,w,dims = query.size() # b X h X w X d
    if train:
        loss = torch.nn.TripletMarginLoss(margin=1.0)
        # 计算Feature separateness loss的主要函数
        loss_mse = torch.nn.MSELoss()
        # 计算均方差损失
        softmax_score_query, softmax_score_memory = self.get_score(keys, query)
    
        query_reshape = query.contiguous().view(batch_size*h*w, dims)
    
        _, gathering_indices = torch.topk(softmax_score_memory, 2, dim=1)
    
        #1st, 2nd closest memories
        pos = keys[gathering_indices[:,0]]
        neg = keys[gathering_indices[:,1]]
        top1_loss = loss_mse(query_reshape, pos.detach())
        gathering_loss = loss(query_reshape,pos.detach(), neg.detach())
        
        return gathering_loss, top1_loss
    
        
    else:
        loss_mse = torch.nn.MSELoss()
    
        softmax_score_query, softmax_score_memory = self.get_score(keys, query)
    
        query_reshape = query.contiguous().view(batch_size*h*w, dims)
    
        _, gathering_indices = torch.topk(softmax_score_memory, 1, dim=1)
    
        gathering_loss = loss_mse(query_reshape, keys[gathering_indices].squeeze(1).detach())
        
        return gathering_loss, query_reshape, keys[gathering_indices].squeeze(1).detach(), gathering_indices[:,0]
        
原文地址:https://www.cnblogs.com/pteromyini/p/14402629.html