第四章学习笔记

第四章学习笔记

摘要

本章论述了并发编程,介绍了并行计算的概念,指出了并行计算的重要性;比较了顺序算法与并行算法,以及并行性与并发性;解释了线程的原理及其相对于进程的优势;通过示例介绍了 Pthread 中的线程操作,句括线程管理函数。互斥量、连接、条件变量和屏障等线程同步工具;通过具体示例演示了如何使用线程进行并发编程,包括矩阵计算、快速排序和用并发线程求解线性方程组等方法;解释了死锁问题,并说明了如何防止并发程序中的死锁问题;讨论了信号量,并论证了它们相对于条件变量的优点;还解释了支持Linux 中线程的独特方式。编程项目是为了实现用户级线程。它提供了一个基础系统来帮助读者开始工作。这个基础系统支持并发任务的动态创建、执行和终止,相当干在某个进程的同一地址空间中执行线程。读者可通过该项目实现线程同步的线程连接、互斥量和信号量,并演示它们在并发程序中的用法。该编程项目会让读者更加深入地了解多任务处理、线程同步和并发编程的原理及方法。

1.并行

(1)顺序算法和并行算法

顺序算法:begin-end代码块列出算法。可包含多个步骤,所有步骤通过单个任务依次执行,每次执行一个步骤,全执行完,算法结束。

并行算法:cobegin-coend代码块来指定独立任务,所有任务都是并行执行的,紧接着代码块的下一个步骤将只在所有这些任务完成之后执行。

(2)并行性与并发性

并行算法只识别可并行执行的任务,但是它没有规定如何将任务映射到处理组件。在理想情况下,并行算法中的所有任务都应该同时实时执行。然而,真正的并行执行只能在有多个处理组件的系统中实现,比如多处理器或多核系统。在单 CPU 系统中,一次只能执行一个任务。在这种情况下,不同的任务只能并发执行、即在逻辑上并行执行。在单CPU系统中,并发性是通过多任务处理来实现的。

2.线程

(1)线程的原理

线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。在Unix System V及SunOS中也被称为轻量进程(lightweight processes),但轻量进程更多指内核线程(kernel thread),而把用户线程(user thread)称为线程。线程是独立调度和分派的基本单位。线程可以为操作系统内核调度的内核线程,如Win32线程;由用户进程自行调度的用户线程,如Linux平台的POSIX Thread;或者由内核与用户进程,如Windows 7的线程,进行混合调度。

(2)线程的优点

  1. 线程创建和切换速度更快;
  2. 线程的相应速度更快;
  3. 线程更适合并行计算;

(3)线程的缺点

(1)由于地址空间共享,线程需要来自用户的明确同步。

(2)许多库函数可能对线程不安全,例如传统 strtok()函数将一个字符串分成一连串令牌。通常,任何使用全局变量或依赖于静态内存内容的函数,线程都不安全。为了使库函数适应线程环境,还需要做大量的工作。

(3)在单CPU系统上,使用线程解决问题实际上要比使用顺序程序慢,这是由在运行时创建线程和切换上下文的系统开销造成的。

3.线程管理函数

(1)创建线程

使用pthread_create()函数创建线程。

int prhread_create (pthread_t *pthread_id,pthread_attr_t *attr,
                Void *(*func)(void *), void *arg);

如果成功则返回0,如果失败则返回错误代码。其中,attr参数最复杂。下面给出了attr参数的使用步骤。

  1. 定义一个pthread属性变量 pthread_attr_t attr。

  2. 用pthread_attr_init(&attr)初始化属性变量。

  3. 设置属性变量并在 pthread_create()调用中使用。

  4. 必要时,通过 pthread_attr_destroy(&attr)释放 attr资源。

(2)线程ID

线程ID是一种不透明的数据类型,取决于实现情况。因此,不应该直接比较线程ID。如果需要,可以使用pthread_equal()函数对线程ID进行比较。

int pthread_equal (pthread_t t1, pthread_t t2);
如果是不同的线程,则返回0,否则返回非0。

(3)线程终止

线程函数结束后,线程即终止。或者,线程可以调用函数

int pthread_exit (void *status);
进行显示终止,其中状态是线程的退出状态。通常,0退出值表示正常终止,非0只表示异常终止。

(4)线程连接

一个线程可以等待另一个线程的终止,通过:

int pthread_join (pthread_t thread,void **status_ptr);

终止线程退出状态以status_ptr返回。

4.线程同步

(1)互斥量

最简单的同步工具是锁,它允许执行实体仅在有锁的情况下才能继续执行。在Pthread中,锁被称为互斥量。在使用之前必须对他们进行初始化。

静态方法:

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER

定义互斥量m,并使用默认属性对其进行初始化。

动态方法:使用pthread_mutex_init()函数,可通过attr参数设置互斥属性。

pthread_mutex_init(pthread_mutex_t *m,pthread_mutexattr_t,*attr);

通常attr参数可以设置位NULL,作为默认属性。
初始化完成后,线程可以通过以下函数使用互斥量。

(2)死锁预防

互斥量使用封锁协议。如果某线程不能获取互斥量,就会被阻塞,等待互斥量解锁后再继续。在任何封锁协议中,误用加锁可能会产生一些问题。最常见和突出的问题是死锁。

有多种方法可以解决可能的死锁问题,其中包括死锁预防、死锁规避、死锁检测和恢复等。

在实际系统中,唯一可行的方法是死锁预防,试图在设计并行算法时防止死锁的发生。一种简单的死锁预防方法是对互斥量进行排序,并确保每个线程只在一个方向请求互斥量,这样请求序列中就不会有循环。

条件加锁和退避预防死锁

(3)条件变量

作为锁,互斥量仅用于确保线程只能互斥地访问临界区中的共享数据对象。条件变量提供了一种线程协作的方法。在Pthread中,使用类型pthread_cond_t来声明条件变量,而且必须在使用前进行初始化。

静态方法

pthread_cond_t con = PTHREAD_COND_INITALLIZER;

动态方法

使用pthread_cond_init()函数,通过attr参数设置条件变量。
在互斥量的临界区中,线程可通过以下函数使用条件变量来相互协作。

pthread_cond_wait(conditlon,mutex):该函数会阻塞调用线程,直到发出指定条件的信号。当互斥量被加锁时、应调用该例程。它会在线程等待时自动释放互斥量。互斥量将在接收到信号并唤醒阻塞的线程后自动锁定。

pthread cond signal(condition);该函数用来发出信号,即唤醒正在等待条件变量的线程或解除阻塞。它应在互斥量被加锁后调用,而且必须解锁互斥量才能完成pthread_cond_wait ()。

pthread cond broadcast(condition)∶该函数会解除被阻塞在条件变量上的所有线程阻塞。所有未阻塞的线程将争用同一个互斥量来访问条件变量。它们的执行顺序取决于线程调度。

(4)信号量

信号量和条件变量之间的主要区别是,前者包含一个计数器,可操作计数器,测试计数器值以做出决策等,所有这些都是临界区的原子操作或基本操作,而后者需要一个特定的互斥量来执行临界区。在 Pthreads 中,互斥量严格用于封锁。而条件变量可用于线程协作。相反,可以把使用初始值1计算信号量当作锁。带有其他初始值的信号量可用于协作。因此,信号量比条件变量更通用、更灵活。下面的示例说明了信号量相对于条件变量的优势。

信号量是进程同步的一般机制。(计数)信号量是一种数据结构

struct sem{
int value;
struct process *queue
}s;

最有名的信号量操作时P和V,定义见下文:

(5)屏障

线程连接操作允许某线程(通常是主线程)等待其他线程终止。在等待的所有线程都终止后,主线程可创建新线程来继续执行并行程序的其余部分。创建新线程需要系统开销。在某些情况下,保持线程活动会更好,但应要求它们在所有线程都达到指定同步点之前不能继续活动。

生产者—消费者问题
我们将使用线程和条件变量来实现一个简化版的生产者-消费者问题,也称有限缓冲问题。生产者-消费者问题通常将进程定义为执行实体,可看作当前上下文中的线程。下面是该问题的定义。

一系列生产者和消费者进程共享数量有限的缓冲区。每个缓冲区每次有一个特定的项目。最开始,所有缓冲区都是空的。当一个生产者将一个项目放人一个空缓冲区时,该缓冲区就会变满。当一个消费者从一个满的缓冲区中获取一个项目时,该缓冲区就会变空。如果没有空缓冲区,生产者必须等待。同样,如果没有满缓冲区,则消费者必须等待。此外,当等待事件发生时、必须允许等待进程继续。

5、linux中的线程

与其他操作系统不同,Linux不区分进程和线程。对于Linux内核,线程只是一个与其他进程共享某些资源的进程。在Linux中,进程和线程都是由clone()系统调用创建的。

int clone(int(*fn)(void *),void *chile_stack,int flags,void *arg)

实践

星光荡开宇宙
原文地址:https://www.cnblogs.com/pogbar/p/15490715.html